مروری بر عوامل تاثیرگذار بر رفتار جریان مواد مرکب بسیار پرشده
محورهای موضوعی : پليمرها و نانوفناوری
1 - دانشگاه تهران
کلید واژه: مواد مرکب بسیار پرشده, رفتار رئولوژیکی , رفتار جریان, رفتار شبه پلاستیک, گرانروی,
چکیده مقاله :
مواد مرکب بسیار پرشده از دو جزء ماتریس پلیمری و پرکنندههای مختلف با کسر وزنی بیشتر از %30 تشکیل شده است و کاربرد فراوانی در سامانه های دفاعی و موتورهای هوا فضایی دارند. هریک از پودرهای فلزی باتوجه به خواص، نوع دانهبندی، نوع اندازه ذرات، مورفولوژی میتوانند بر رفتار جریان ماده مرکب بسیار پرشده تاثیرگذار باشند. بررسی سه نوع پودر فلزی، آلومینیوم، منیزیم و بور که بیشترین کاربرد را در ماده مرکب بسیار پرشده دارند، در این مطالعه انجام شده است. نتایج حاصل از بررسی رفتار جریان نشان داد که با افزایش اندازه ذرات جامد، محتوای پودرهای فلزی و هم چنین عامل شبکه کننده، گرانروی و تنش تسلیم دوغاب مواد مرکب افزایش می یابد و موجب می شود که خواص جریان یافتن دوغاب بدتر گردد و عمرکاربری آن کوتاه¬تر شود. افزایش گرانروی به علت ذرات جامد ریزتر و افزایش وزن مولکولی و تشکیل اتصالات عرضی در ساختار پیشپلیمر میباشد. گرانروی دوغاب مواد مرکب با افزایش سرعت برشی کاهش می یابد و رفتارغیرنیوتنی شبه پلاستیک را از خود نشان می¬دهد و مقدار آن به سرعت و زمان نیروی برشی اعمالشده بستگی دارد. ترکیب پودر فلزی بور با پودر منیزیم و یا آلومینیوم می¬تواند تا حد زیادی رفتار جریان ماده مرکب بسیار پر شده را بهبود بخشد.
The highly filled composite consists of two polymer matrix components and different fillers with a weight fraction of more than 30% and are widely used in defense systems and aerospace engines. Each of the metal powders can affect the rheological behavior of highly filled composites according to their properties, type of granulation, type of particle size, and morphology. The investigation of three types of metal powders, aluminum, magnesium and boron, which are the most used in highly filled composites, has been done in this study. The results of the investigation of the rheological behavior showed that with the increase in the size of solid particles, the content of metal powders, as well as the cross-linking factor, the viscosity and yield stress of the slurry of composite materials increases and causes the flow properties of the slurry to deteriorate and its service life to be shortened. become wet The increase in viscosity is due to smaller solid particles and the increase in molecular weight and the formation of transverse connections in the structure of the prepolymer. The viscosity of the slurry of composite materials decreases with the increase of the shearing speed and shows non-Newtonian pseudo-plastic behavior, and its value depends on the speed and time of the applied shearing force. Combining boron metal powder with magnesium or aluminum powder can greatly improve the rheological behavior of the highly filled composite.
[1] Rothberg H., Pietsch S., Schneider G.A and Heinrich S. “Fabrication of Highly Filled Composites with an Innovative Miniaturized Spouted Bed”. Processes, 8(5), 521, 2020.
[2] Bek M., Gonzalez-Gutierrez J., Kukla C., Pusnik Cresnar K., Maroh B and Slemenik Perse L. “Rheological Behaviour of Highly Filled Materials for Injection Moulding and Additive Manufacturing: Effect of Particle Material and Loading”, Applied Sciences, 10(22), 7993, 2020.
[3] Muthiah RM., Krishnamurthy V. N. and Gupta B. R. “Rheology of HTPB Propellants. 1. Effect of Solid Loading, Oxidizer Particle Size, and Aluminium Content”. Journal of Applied Polymers Sciences, 44, 2043-2052, 1992.
[4] Bandgar BM., Mukundan T., Muthiah RM , Sharma K and Krishnamurthy V.N. “Rheological Characterization and Modeling of Composite Propellant Slurry”. 2003.
[5] Mahanta A.K., Dharmsaktu I and Pattnayak P.l. “Rheological Behaviour of HTPB-Based Composite Propellant: Effect of Temperature and Pot life on Casting Rate”. Defence Science Journal, 57, 435-442, 2007.
[6] Zhang Q., Shu Y., Liu N., Lu X., Shu Y., Wang X., Mo H and Xu M. “Hydroxyl Terminated Polybutadiene: Chemical Modification and Application of These Modifiers in Propellants and Explosives”. Central European Journal of Energetic Materials, 16(2), 153-193, 2019.
[7] Quagliano Amado J. C., Ross P. G., Mattos Silva Murakami L and Narciso Dutra J. C. “Properties of Hydroxyl‐Terminal Polybutadiene (HTPB) and Its Use as a Liner and Binder for Composite Propellants: A Review of Recent Advances”. Propellants, Explosives, Pyrotechnics, 1-19, 2022.
[8] Lysien K., Stolarczyk A and Jarosz T. “Solid Propellant Formulations: A Review of Recent Progress and Utilized Components”. Energetic Materials and Transitions, 14(21), 1-17, 2021.
[9] Vara Prasad C., Arunachalam V and Ranganathan V. “Effect of the Formulation of Ingredients and The Process Parameters on the Fracture Toughness of HTPB Based Composite Solid Propellant”. Journal of Energy and Chemical Engineering, 2(3), 94-105, 2014.
[10] John T. “Studies on Burning Rates of Aluminum, Magnesium and their Alloy Based Fuel Rich Propellants for Integrated Rocket Ramjet Applications”, M.Sc. Thesis Poona University (India), 108, 1988.
[11] Athawale B.K. “Studies on Fuel Rich Metallized Solid Rocket Propellants”, Ph.D. Thesis Savitribai Phule Pune University (India), 1995.
[12] Ladea R., Wasewar K., Sangtyani R., Kumar A., Shendea D and Peshw D. “Effect of Aluminium Nanoparticles on Rheology of AP Based Composite Experimental Study and Mathematical Modelling”. Journal of Molecular Simulation, 47(6), 526-535, 2021.
[13] Suwana Budi R., Restasari A., Budi R.S and Hartaya K. “Pseudoplasticity of Propellant Slurry with Varied Aluminium Content for Castability Development”. Journal of Physics Conference Series, 1005, 1-7, 2018.
[14] Pang w., DeLuca L.T., Fan X., Glotov O and Zhao F. “Boron-Based Fuel-Rich Propellant”: CRC Press, 101-122, 2019.
[15] Rueda M.M., Auscher M.C., Fulchiron R., Perie T., Martin G., Sonntag P and Cassagnau P. “Rheology and Applications of Highly Filled Polymers: A review of current understanding”. Progress in Polymer Science, 66, 22-53, 2017.
[16] Bandgar BM., Mukundan T., Muthiah RM , Sharma K and Krishnamurthy V.N. “Rheological Characterization and Modeling of Composite Propellant Slurry”. 2003.
[17] Erişken C., Goçmez A., Yilmazer U., Pekel F and Ozkar S. “Modeling and Rheology of HTPB Based Composite Solid Propellants”. Polymer Composite, 19(4), 463-472, 1998.
[18] Kukla C., Duretek I., Gonzalez-Gutierrez J and Holzer C. “Rheology of Highly Filled Polymers. In Polymer rheology”. IntechOpen. 153-173, 2018.
[19] Muthiah R.m., Manjari R and Krishnamurthy V. N., “Effect of Temperature on The Rheological Behaviour of HTPB Propellant Slurry”. polymer engineering and science, 31(2), 61-67, 1991.
[20] Mahanta A.K., Dharmsaktu I and Pattnayak P.l. “Rheological Behaviour of HTPB-Based Composite Propellant: Effect of Temperature and Pot life on Casting Rate”. Defence Science Journal, 57, 435-442, 2007.
[21] Muthiah Rm., Manjari R., Krishnamurthy V. N and Gubta B.R. “Rheology of HTPB Propellant: Effect of Mixing Speed and Mixing Time”. Defence Science Journal, 43(2), 167-172, 1993.
[22] Muthiah RM., Krishnamurthy V. N. and Gupta B. R. “Rheology of HTPB Propellants. 1. Effect of Solid Loading, Oxidizer Particle Size, and Aluminium Content”. Journal of Applied Polymers Sciences, 44, 2043-2052, 1992.
[23] Yang Ke-Xi., Tao Ze-Ming and Wang Guo-Juan. “Viscosity Prediction of Composite Solid Propellant Slurry”. Propellants, Explosives, Pyrotechnics, 11(6), 167–169, 1986.
[24] M. M. Iqbal; W. Liang. “Modeling of Composite Propellant Properties Based on Polymer Rheology”; in 42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, 5252, 2006.
]25 [امینی، سیدمهدی؛ کشاورز، محمدحسین؛ قربانی، فراز محمد؛ موسوی آذر، علی و آقایاری، مهدی. "تاثیر آمونیوم پرکلرات با دو اندازه (درشت و ریز) بر گرانروی پیشرانه جامد مرکب". مجله علمی پژوهشی مواد پر انرژی، سال نهم، شماره 2، شماره پیاپی 23، 1393.
]26 [تقوی، سیدرضا؛ دهنوی، محمدعلی؛ زراعتکارمقدم، محسن و بهمنی¬فر، فرشاد. "مطالعه تاثیر افزایش پودر آلومینیوم بر خواص فیزیکی-مکانیکی، رئولوژی و عملکردی پیشرانه جامد مرکب بر پایه HTPB". چهارمین کنفرانس بین المللی نوآوری های اخیر در شیمی و مهندسی شیمی، 10-1، 1396.
[27] Kumari A., Mehilal, Jain S., Jain M. K and Bhattacharya B. “Nano-Ammonium Perchlorate: Preparation, Characterization, and Evaluation in Composite Propellant Formulation”. Journal of Energetic Materials, 31(3), 192–202, 2013.
[28] Pang W., Fan ., Zhao F., Zhang W., Xu H., Yu H., Xie W., Yan N and Liu F. “Effects of Different Nano-Metric Particles on the Properties of Composite Solid Propellants”. Propellants, Explosives, Pyrotechnics, 39(3), 329–336, 2014.
[29] Lade R., Wasewar K., Sangtyani R., Kumar A., Shendea D and Peshw D. “Effect of Aluminum Nanoparticles on Rheological Behavior of HTPB-Based Composite Rocket”. Journal of Energetic Materials, 37(3), 1-16, 2018.
[30] Maggi F. “Curing Viscosity of HTPB-Based Binder Embedding Micro and Nano-Aluminum Particles”. Propellants, Explosives, Pyrotechnics, 39(5), 755–760, 2014.
[31] Pang W., Zhao F.Q., Deluca L.T., Kappenstein C., Xu H.X., and Fan X.Z. “Effects of Nano-Sized Al on the Combustion Performance of Fuel Rich Solid Rocket Propellants”. Eurasian Chemico-Technological Journal. 18, 197-206, 2016.
[32] Athawale B.K., Asthana S.N. and Haridwar Singh. “Metallised Fuel-rich Propellants for Solid Rocket Ramjet-A Review”. Defence Science Journal, 44(4), 269-278, 1994.
[33] Liao L., Pang W., Xu H., Li Y., Fan X and Shu A. “Effects of Different Size and Shaped Magnesium Particles on the Properties for Fuel Rich Solid Propellant”. Advanced Materials Research, 634-638, 1918–1921, 2013.
[34] Pang W., Fan, X., Zhao F., Xu H., Zhang W., Yu H., Li Y., Liu F., Xie W and Yan N. “Effects of Different Metal Fuels on the Characteristics for HTPB-based Fuel Rich Solid Propellants”. Propellants, Explosives, Pyrotechnics, 38(6), 852–859, 2013.
[35] Pang w., Fan x.; Xu H. “Rheological Properties of Agglomerated Boron Particles in HTPB-Based fuel-rich propellant”. Chinese Journal of Explosives & Propellants, 33(3), 84-87, 2010.
[36] Pang w., Fan x.; Xu H. “Rheological Properties of Agglomerated Boron Particles in HTPB-Based fuel-rich propellant”. Chinese Journal of Explosives & Propellants, 33(3), 84-87, 2010.
[37] Nair C. R. Prasad C. H.D.V and Ninan K N . “Effect of Process Parameters on the Viscosity of AP/Al/HTPB Based Solid Propellant Slurry”. Journal of Energy & Chemical Engineering, 2013.
[38] Abhijit D., Md Abdul S.K., Javaid A., Arun K.S and Santanu C. “Effect of Microstructure on HTPB Based Polyurethane (HTPB-PU)”. Journal of Materials Science and Engineering, 5(3-4) ,145-151, 2015.
[39] Sekkar V and Raunija T.S.K. “Hydroxyl-Terminated Polybutadiene-Based Polyurethane Networks as Solid Propellant Binder-State of the Art”. Journal of Propulsion and Power, 31(1), 16–35, 2015.
[40] Sekkar V and Raunija T.S.K. “Issues Related with Pot Life Extension for Hydroxyl-Terminated Polybutadiene-Based Solid Propellant Binder System”. Propellants, Explosives, Pyrotechnics, 40(2), 267–274, 2015.
[41] Sekkar V., Ambika Devi K adn Ninan K. N. “Rheo-kinetic evaluation on the formation of urethane networks based on hydroxyl-terminated polybutadiene”. Journal of Applied Polymer Science, 79(10), 1869–1876, 2001.
[42] Jawalkar S.N., Mehilal., Kurva R., Singh P.P and Bhattacharya B. “Influence of Bicurative on Processibility of Composite Propellant”; Defence Science Journal, 57(5), 669, 2007.
[43] Jawalkar S.N., Mehilal., Kurva R., Singh P.P and Bhattacharya B. “Influence of Bicurative on Processibility of Composite Propellant”; Defence Science Journal, 57(5), 669, 2007.
[44] Jawalkar S. N., Mehilal R. K., Radhakrishnan K. K and Bhattacharya B. “Studies on The Effect of Plasticiser and Addition of Toluene Diisocyanate at Different Temperatures in Composite Propellant Formulations”. Journal of Hazardous Materials, 164(2-3), 549–554, 2009.
[45] Restasari A., Abdillah LH., Ardianingsih R., Sitompul HRD., Budi RS., Hartaya K and Wibowo HB. “Thixotropic Behavior in Defining Particle Packing Density of Highly Filled AP/HTPB-Based Propellant”. Symmetry, 13(10), 1767, 2021.