بررسی تغییرات مداری آب و هوایی و نرخ رسوبگذاری در سازند ایلام در میدان نفتی کوپال، فروافتادگی دزفول
محورهای موضوعی : زمین شناسی نفتفروغ عباساقی 1 , آرمین امیدپور 2
1 - دانشگاه فردوسی
2 - شرکت ملی مناطق نفت خیز جنوب، اهواز، ایران
کلید واژه: سازند ایلام, زاگرس, سانتونین, چرخه های میلانکوویچ, نرخ رسوبگذاری,
چکیده مقاله :
توالی¬های کربناته شاخص¬های اقلیمی دیرینه را به خوبی در خود ثبت می¬کنند و برای درک الگوهای آب و هوایی، شناسایی چرخه¬های میلانکوویچ و تاثیر آنها بر نوسانات سطح آب دریا در طول فانروزوئیک بسیار مفید هستند. در مطالعه حاضر توالی¬های کربناته سازند ایلام به سن سانتونین و داده¬های لاگ گامای طیفی مربوط به آنها در یکی از میادین نفتی فروافتادگی دزفول در جنوب غرب زاگرس جهت شناسایی این چرخه¬ها و عوامل موثر بر رسوبگذاری این سازند انتخاب شده است. شواهد موجود نشان می¬دهند که انواع چرخه¬های میلانکوویچ در زمان رسوبگذاری سازند ایلام بر روی شرایط آب و هوایی موثر بوده¬اند، اما چرخه¬های طولانی مدت گریز از مرکز محور زمین نقش بیشتری در این زمینه داشته¬اند. نرخ رسوبگذاری در این سازند به طور میانگین 5/5 – 4 سانتی¬متر در هر هزار سال محاسبه شده است. با توجه به مقدار نرخ رسوبگذاری و تعداد چرخه¬های طولانی مدت گریز از مرکز محور زمین شناسایی شده، می¬توان گفت سازند ایلام در مدت زمان 3/1 – 18/1 میلیون سال رسوبگذاری کرده است. تغییرات سطح آب دریا در چاه¬های مورد مطالعه تا حد زیادی با تغییرات جهانی سطح آب دریاها مطابقت نشان می¬دهد. رسوبگذاری سازند ایلام تا حد زیادی متاثر از عملکرد چرخه¬های طولانی مدت گریز از مرکز محور زمین، نوسانات جهانی سطح آب دریا و حوادث تکتونیکی کرتاسه بالایی بوده است.
Carbonate successions are considered archives for recording the palaeoclimatic proxies and so they are suitable for understanding climatic patterns and identifying the Milankovitch cycles and cycles’s impacts on sea-level changes during Phanerozoic. In the current study, the carbonate successions of the Ilam Formation (Santonian) and their spectral gamma-ray data were chosen to identify the cycles and influencing factors on the sedimentation in one of the oilfields in the Dezful Embayment, southwest of Zagros mountains. According to available evidence, all of Milankovitch cycles contributed to changes in climatic conditions simultaneously with development of the Ilam Formation, however, the long Eccentricity cycles were dominant and have played a greater role in this issue. The sedimentation rate was estimated at 4-5.5 cm/kyr on average in the Ilam Formation. Considering the sedimentation rate and number of identified long Eccentricity cycles, it could be said the deposition in the Ilam Formation lasted in 1.13-1.8 Ma. Our results indicate that the relative sea-level changes in the studied wells correspond to the eustatic sea level. The deposition process in the Ilam Formation was largely affected by the performance of long Eccentricity cycles, eustatic sea level, and tectonic events during the Upper Cretaceous.
[1] اسدی مهماندوستی، ا.، 1384، ژئوشیمی و دیاژنز سازند ایلام در میادین نفتی آب¬تیمور و منصوری و رخنمون تنگ رشید کوه پیون، منطقه ایذه: پایان¬نامه کارشناسی ارشد، دانشگاه شهید بهشتی، 190 صفحه.
[2] امیدی، ر.، صادقی، ع.، حسینی برزی، م.، اکبری بس¬کلایه، ن.، 1397، زیست¬چینه¬نگاری سازندهای سروک و ایلام در میدان نفتی آب¬تیمور (چاه¬های شماره 1 و 14): فصلنامه زمین¬شناسی ایران، شماره 12، صفحه 92-75.
[3] رحمانی¬زاده، ح.، 1388، محیط رسوبی و ژئوشیمی سازند ایلام در کوه سورگاه و مقایسه آن با برش سیاه¬کوه (ایلام): پایان نامه کارشناسی ارشد، دانشگاه شهید بهشتی، 203 صفحه.
[4] عباساقی، ف.، محبوبی، ا.، موسوی حرمی، ر.، آورجانی، ش.، 1394، کاربرد آنالیز طیفی در چینه¬نگاری سکانسی و تعیین چرخه¬های میلانکوویچ در سازند سروک در میدان کوپال: رسوب¬شناسی کاربردی، شماره 5، صفحه 70-54.
[5] غریبی ورزقانی، س.، 1393، میکروفاسیس، محیط رسوبی و ژئوشیمی سازند ایلام در میدان نفتی آزادگان: پایان¬نامه کارشناسی ارشد، دانشگاه شهیدبهشتی، 217 صفحه.
[6] فولادوند، ر.، 1401، چینه¬نگاری سکانسی، تاریخچه رسوبگذاری، دیاژنز و مدلسازی هتروژنیتی سازند ایلام در برخی از میادین بخش جنوبی فروافتادگی دزفول شمالی: رساله دکترا، دانشگاه شهیدبهشتی، 242 صفحه.
[7] قلی¬زاده، م.، ،1400، محیط رسوبی، دیاژنز، چینه¬نگاری سکانسی و کیفیت مخزنی سازند ایلام در ناحیه فروافتادگی دزفول و دشت آبادان (چاه¬های A، B، C و D) در جنوب غرب ایران. پایان¬نامه کارشناسی ارشد، دانشگاه شهیدبهشتی، 178 صفحه.
[8] مطیعی، ه.، 1372، زمین¬شناسی ایران، چینه¬شناسی زاگرس: انتشارات سازمان زمین¬شناسی و اکتشافات معدنی کشور، طرح تدوین کتاب، 536 صفحه.
[9] ADABI, M.H. and ASADI MEHMANDOSTI, E., 2008, Microfacies and Geochemistry of the Ilam Formation in the Tang-E Rashid Area, Izeh, SW Iran: Journal of Asian Earth Sciences, 33, 267-277. [10] ADAMS, T.D., 1969, Asmari Formation of Lurestan and Khuzestan Provinces, Iranian Oil Operation Company, Geological and Exploration Devision: Interior report No 1154: 88p. [11] AGARD, P., OMRANI, J., JOLIVET, L. and MOUTHEREAU, F., 2005, Convergence history across Zagros (Iran): Constraints from collisional and earlier deformation: International Journal of Earth Science, 94, 401–419. [12] ALAVI, M., 1994, Tectonics of the Zagros orogenic belt of Iran: new data and interpretations: Tectonophysics, 229, 211-228. [13] AQRAWI, A.A.M., GOFF, J.C., HORBURY, A.D. and SADOONI, F.N., 2010, The Petroleum Geology of Iraq: Scientific Press Ltd. 424 pp. [14] BAHK, J.J., UM, I.K., YI, B.Y. and YOO, D.G., 2015, Paleoceanographic implications and cyclostratigraphy of variations in well-log data from the western slope of the Ulleung Basin, East Sea: Quaternary International, 392, 58-68. [15] BAILEY, R.J., 2009, Cyclostratigraphy reasoning and orbital time calibration: Terra Nova, 21, 340-351. [16] BECKMANN, B., FLOGEL, S., HOFMANN, P., SCHULZ, M. and WAGNER, T., 2005. Orbital forcing of Cretaceous River discharge in tropical Africa and ocean response: Nature, 437, 241–244. [17] BERBERIAN, M., 1995, Master blind thrust faults hidden under the Zagros Folds: active basement tectonics and surface morphotectonics: Tectonophysics, 241, 193–224. [18] CARMINATI, E., ALDEGA, L., TRIPPETTA, F., SHABAN, A., NARIMANI, H. and SHERKATI, S., 2014, Control of folding and faulting on fracturing in the Zagros (Iran): the Kuh-e-Sarbalesh anticline: Journal of Asian Earth Sciences, 79, 400–414. [19] CHEN, D.Z. and TUCKER, M.E., 2003, The Frasnian-Famennian mass extinction: Insights from high-resolution sequence stratigraphy in South China: Palaeogeography Palaeoclimatology Palaeoecology, 193, 87-111. [20] CHIU, J.K., CHUNG, S.L., ZARRINKOUB, M.H., MOHAMMADI, S.S., KHATIB, M.M. and IIZUKA, Y., 2013, Zircon U–Pb age constraints from Iran on the magmatic evolution related to Neotethyan subduction and Zagros orogeny: Lithos, 162–163, 70–87. [21] COOPER, M.R., 1977, Eustasy during the Cretaceous; its implication and importance: Palaeogeography Palaeoclimatology Palaeoecology, 22, 1-60. [22] FALAHATKHAH, O., KADKHODAEI, A., CIABGHODSI, A.A. and LI, M., 2021. Cyclostratigraphy of the Lower Triassic Kangan Formation in the Salman gas field, eastern Persian Gulf, Iran: Palaeogeography Palaeoclimatology Palaeoecology, 561, 110045. [23] FÖLLMI, K.B., 2012, Early Cretaceous life, climate and anoxia: Cretaceous Research, 35, 230-257. [24] GEALEY, W.K., 1988, Plate tectonic evolution of the Mediterranean Middle East region: Tectonophysics, 155, 285-306. [25] GOLONKA, J., 2000, Cambrian-Neogene plate tectonic in maps. Wydawnictwa Uniwersytetu, Jagiellonskiego, Krakow. Provenance: the Cyprus case: Journal of Geology, 108, 199-218. [26] GOLONKA, J., 2004, Plate tectonic evolution of the southern margin of Eurasia in the Mesozoic and Cenozoic: Tectonophysics, 381, 235-273. [27] GRADSTEIN, F.M. and SHERIDAN, R.E., 1983, On the Jurassic Atlantic Ocean and a synthesis of results of deep-sea drilling project Leg 76: In: SHERIDAN, R.E. and GRADSTEIN, F.M. (Eds.), 1983, Initial reports of the deep-sea drilling project, 76, 913-943. [28] HAQ, B.U., 2014, Cretaceous eustasy revisited: Global and Planetary Change, 113, 44-58. [29] HAY, W.W., 2011, Can Humans Force a Return to a “Cretaceous” Climate?: Sedimentary Geology, 235, 5-26. [30] HEYDARI, E., 2008, Tectonics versus eustatic control on supersequences of the Zagros Mountains of Iran: Tectonophysics, 451, 56–70. [31] HILGEN, F.J., AZIZ, H.A., KRIJGSMAN, W., RAFFI, I. and TURCO, E., 2003, Integrated stratigraphy and astronomical tuning of the Serravallian and lower Tortonian at Monte Dei Corvi (Middle- Upper Miocene, northern Italy): Palaeogeography Palaeoclimatology Palaeoecology, 199, 229-264. [32] HINNOV, L.A., 2004, Earth’s orbital parameters and cycle stratigraphy: In: GRADSTEIN, F.M., OGG, J.G. and SMITH, A.G. (Eds.), A Geological Time Scale 2004. Cambridge University Press, Cambridge, 55-62. [33] JIN, S., LIU, S., LI, Z., CHEN, A. and MA, C., 2022, Astrochronology of a middle Eocene lacustrine sequence and sedimentary noise modeling of lake-level changes in Dongying Depression, Bohai Bay Basin: Palaeogeography Palaeoclimatology Palaeoecology, 585, 110740. [34] KALVODA, J.O., BABEK, F.X., DEVUYAST, G.S. and SEVASTOPOLO, G., 2011, Biostratigraphy, sequence stratigraphy and gamma-ray spectrometry of the Tournaisian-Visean boundary interval in the Dublin Basin: Bulletin of Geosciences, 86, 683-706. [35] KELLER, G., 2008, Cretaceous climate, volcanism, impacts, and biotic effects: Cretaceous Research, 29, 754-771. [36] KODAMA, K.P. and HINNOV, L., 2015, Rock Magnetic Cyclostratigraphy: Wiley-Blackwell, Oxford, 176. [37] LASKAR, J., ROBUTEL, P., JOUTEL, F., GASTINEAU, M., CORREIA, A.C.M. and LEVRARD, B., 2004, A long-term numerical solution for the insolation quantities of the Earth: Astron Astrophys, 428, 261-285. [38] LI, M., HINNOV, L.A., HUANG, C. and OGG, J.G., 2018a, Sedimentary noise and sea levels linked to land–ocean water exchange and obliquity forcing: Nature Communications, 9, 1004. [39] LI, M., KUMP, L.R., HINNOV, L.A. and MANN, M.E., 2018c. Tracking variable sedimentation rates and astronomical forcing in Phanerozoic paleoclimate proxy series with evolutionary correlation coefficients and hypothesis testing: Earth and Planetary Science Letters, 501, 165-179. [40] LI, M., HINNOV, L. and KUMP, L., 2019b, Acycle: time-series analysis software for paleoclimate research and education: Computers and Geosciences, 127, 12–22. [41] MAYER, H. and APPEL, E., 1999, Milankovitch cyclicity and rock-magnetic signatures of palaeoclimate change in the Early Cretaceous Biancone Formation of the Southern Alps, Italy: Cretaceous Research, 20, 189-214. [42] MEHRABI, H., NAVIDTALAB, A., ENAYATI, A. and BAGHERPOUR, B., 2022, Age, duration, and geochemical signatures of paleo-exposure events in Cenomanian-Santonian sequences (Sarvak and Ilam formations) in SW Iran: Insights from carbon and strontium isotopes chemostratigraphy: Sedimentary Geology, 434, 106136. [43] METZNER, N., NIEBUHR, B., PURNER, T. and WILMSEN, M., 2023, Chemostratigraphy of the lower Danubian Cretaceous Group (Cenomanian-lower Turonian, Bavaria, SE Germany)- A new carbon isotope reference curve and inter-basinal correlation: Cretaceous Research, 149, 105568. [44] MEYERS, S.R., SAGEMAN, B.B. and ARTHUR, M.A., 2012, Obliquity forcing of organic matter accumulation during Oceanic Anoxic Event 2: Paleoceanography, 27, 1–19. [45] MILANKOVICH, M., 1941, Kanon der Erdbestrahlungen und seine Anwendung auf das Eiszeitenproblem. Royal Serbian Academy, Section of Mathematical and Natural Sciences 33, Belgrade. [46] MOHAJJEL, M., FERGUSSON, C.L. and SAHANDI, M.R., 2003, Cretaceous-Tertiary convergence and continental collision, Sanandaj-Sirjan zone, western Iran: Journal of Asian Earth Sciences, 21, 397-412. [47] NAJAFI, M., VERGES, J., ETEMAD-SAEED, N. and KARIMNEJAD, H.R., 2018, Folding, thrusting and diapirism: Competing mechanisms for shaping the structure of the north Dezful Embayment, Zagros, Iran: Basin Research, 30, 1200-1229. [48] NAJAFI, M., BEAMUD, E., RUH, J., MOUTHEREAU, F., TAHMASBI, A., BERNAOLA, G., YASSAGHI, A., MOTAMEDI, H., SHERKATI, S., HASAN GOODARZI, M.G. and VERGES, J., 2020, Pliocene growth of the Dowlatabad syncline in frontal Fars arc: Folding propagation across the Zagros Fold Belt, Iran: Geological Society of America Bulletin, 133, 1381-1403. [49] NAVIDTALAB, A., SARFI, M., ENAYATI-BIDGOLI, A. and YAZDI-MOGHADAM, M., 2020, Syn-depositional continental rifting of the Southeastern Neo-Tethys margin during the Albian-Cenomanian: evidence from stratigraphic correlation: International Geology Review, 62, 1698-1723. [50] OMIDPOUR, A., MOUSSAVI-HARAMI, R., MAHBOUBI, A. and RAHIMPOUR-BONAB, H., 2021, Application of stable isotopes, trace elements and spectral gamma-ray log in resolving high-frequency stratigraphic sequences of a mixed carbonate-siliciclastic reservoirs: Marine and Petroleum Geology, 125, 104854. [51] OMIDVAR, M., MEHRABI, H., SAJADI, F., BAHRAMIZADEH-SAJJADI, H., RAHIMPOUR-BONAB, H. and Ashrafzadeh, A., 2014, Revision of the foraminiferal biozonation scheme in Upper Cretaceous carbonates of the Dezful Embayment, Zagros, Iran: integrated palaeontological, sedimentological and geochemical investigation: Revue de Micropaleontologie, 57, 97–116. [52] QIU, R., FANG, L., LU, Y., CHEN, Y., HUANG, R., LEI, W., ZHANG, P. and LI, M., 2023, Cyclostratigraphy of the Lower Jurassic (Toarcian) terrestrial successions in the Sichuan Basin, southwestern China: Journal of Asian Earth Sciences, 250, 105617. [53] SCOTCHMAN, J.I., PICKERING, K.T., SUTCLIFFE, C., DAKIN, N. and ARMSTRONG, E., 2015, Milankovitch cyclicity within the middle Eocene deep-marine guaso system, Ainsa Basin, Spanish Pyrenees: Earth Science Reviews, 144, 107-121. [54] SEPEHR, M. and COSGROVE, J.W., 2004, Structural framework of the Zagros Fold–Thrust Belt, Iran: Marine and Petroleum Geology, 21, 829-843. [55] SHARLAND, P.R., ARCHER, R., CASEY, D.M., DAVIES, R.B., HALL, S.H., HEWARD, A.P., HORBURY, A.D. and SIMMON, M.D., 2001, Arabian Plate sequence stratigraphy. GeoArabia, 2, 371. [56] SHERKATI, S. and LETOUZEY, J., 2004, Variation of Structural Style and Basin Evolution in the Central Zagros (Izeh Zone and Dezful Embayment) Iran: Marin and Petroleum Geology, 21, 535-554. [57] SINNESAEL, M., ZIVANOVIC, M., DE VLEESCHOUWER, D. and CLAEYS, P., 2018, Spectral Moments in Cyclostratigraphy: Advantages and Disadvantages compared to more classic Approaches: Paleoceanography and Paleoclimatology, 33, 493-510. [58] STAMPFLI, G.M. and BOREL, G.D., 2002, A plate tectonic model for the Paleozoic and Mesozoic constrained by dynamic plate boundaries and restored synthetic oceanic isochrons: Earth and Planetary Science Letters, 196, 17–33. [59] TAJMIR RIAHI, Z., SARKARINEJAD, K., FAGHIH, A., SOLEIMANY, B. and PAYROVIAN, G.R., 2021, Impact of inversion tectonics on the spatial distribution of hydrocarbon traps in the NW Persian Gulf and southern Dezful Embayment, SW Iran: Marine and Petroleum Geology, 134, 105364. [60] TALBOT, C.J. and ALAVI, M., 1996, The past of a future syntaxis across the Zagros: In: ALSOP, G.I., BLUNDELL, D.J. and DAVISON, I., (Eds.), 1995, Salt Tectonics. Geological Society, London, 89–109. [61] THOMSON, D.J., 1982, Spectrum estimation and harmonic analysis: Proceedings of the IEEE, 70, 1055–1096. [62] TORRENCE, C. and COMPO, G.P., 1998, A practical guide to wavelet analysis: Bulletin of the American Meteorological Society, 79, 61-78. [63] WEI, X., DENG, Y., YAN, D., LOU, E., JIANG, P., ZHOU, J., HUANG, H., ZHANG, B., FU, H. and GONG, Y., 2023, Organic matter enrichment in Asia’s palaeolake controlled by the early and middle Eocene global warming and astronomically driven precessional climate: Marine and Petroleum Geology, 154, 106342. [64] WYGRALA, B.P., 1989, Integrated study of an oil field in the southern Po basin, northern Italy, Köln: Ph.D dissertation, University of Köln, 217. [65] WYND, J., 1965, Biofacies of the Iranian Consortium Agreement Area. Iranian Oil Corporation Companies. Geological and Exploration Division. [66] ZEEDEN, C., ULFERS, A., PIERDOMINICI, S., SARDAR ABADI, M., VINNEPAND, M., GRELLE, T., HESSE, K., LEU, K. and WONIK, T., 2023, Downhole logging data for time series analysis and cyclostratigraphy. Earth-Science Reviews, 241, 104436. [67] ZHANG, T., ZHANG, C., FAN, T., ZHANG, L., ZHU, R., TAO, J. and LI, M., 2020, Cyclostratigraphy of Lower Triassic successions in the Junggar Basin, northwestern China: Palaeogeography Palaeoclimatology Palaeoecology, 539, 109493.