بررسی تاثير هوشمند سازی شهرها در موفقيت مديريت زنجيره تامين (مورد مطالعه: فروشگاه اینترنتی دیجی کالا)
محورهای موضوعی : مدیریت تکنولوژیاکرم محمدي 1 , معصومه چهارمحال 2
1 - گروه تکنولوژي معماري ، پرديش هنرهاي زيبا، دانشگاه تهران
2 - گروه برنامه ريزي شهري ، دانشکده معماري ، دانشگاه آزاد اسلامي واحد تهران غرب
کلید واژه: سیستمهای مدیریت زنجیره تامین, اینترنت اشیا, دانش شهری, شهر هوشمند.,
چکیده مقاله :
اهدف سیستمهای مدیریت زنجیره تامین (SCM) افزایش کارایی زنجیره تامین برای تحویل صحیح محصولات به مشتریان در سازمانهای توزیع است. علاوه بر این، فرایند هوشمندسازی شهرها این رویکرد را در بسیاری از سازمانها و شرکتها دچار تحول کرده است. تحقیق حاضر با هدف تأثیر شاخصهای شهر هوشمند بر موفقیت سیستم زنجیره تامین انجام گرفت. این تحقیق، از نظر هدف، کاربردی و از نظر روش گردآوری دادهها، توصیفی - پیمایشی است. دادههای مورد نیاز با روش نمونهگیری تصادفی از مشتریان فروشگاه اینترنتی دیجی کالا و با استفاده از ابزار پرسشنامه جمعآوریشده است، که روایی پرسشنامه با روایی صوری و سازه و پایایی آن با استفاده از ضریب آلفای کرونباخ مورد تایید قرار گرفته است. نتایج تجزیهوتحلیل دادهها از روش معادلات ساختاری ساختاری با استفاده از نرم افزار Smart PLS نشان داد، سیستمهای حمل و نقل هوشمند، خدمات مبتنی بر ابر، اینترنت اشیاء و دانش شهری تاثیر معناداری بر موفقیت سیستمهای زنجیره تامین دارند. نتیجه این مطالعه میتواند به طور قابل ملاحظهای به سازمانها و شرکتها با بینشهای متعددی در مورد نقش هوشمندسازی شهرها در موفقیت سیستمهای زنجیره تامین در ارتباط با مشتری کمک کند و استفاده از سیستمهای اطلاعاتی یکپارچه مانند اینترنت اشیا، رایانش ابری، سیستم های حمل و نقل هوشمند و موارد دیگر در این بخش از مدیریت سازمان بسیار مهم است. بنابراین، جنبههای مربوط به این عوامل باید مورد توجه هر سازمان در تلاش برای توسعه سیستمهای مدیریت زنجیره تامین باشد.
[1] Attia, A. and Salama, I.(2018),“Knowledge management capability and supply chain management practices in the Saudi food industry”, Business Process Management Journal, 24(2), pp. 459-477.
[2] Abdel-Basset, M., Manogaran, G. and Mohamed, M. (2018), “Internet of Things (IoT) and its impact on supply chain: a framework for building smart, secure and efficient systems”, Future Generation Computer Systems, Vol. 86, pp. 614-628
[3] Aina, Y.A. (2017), “Achieving smart sustainable cities with GeoICT support: the Saudi evolving smart cities”, Cities, Vol. 71, pp. 49-58
[4] Al-Hitmi, M. and Sherif, K. (2018), “Employee perceptions of fairness toward IoT monitoring”, VINE Journal of Information and Knowledge Management Systems, Vol. 48 No. 4, pp. 504-516.
[5] Ali, S.M., Rahman, M.H., Tumpa, T.J., Rifat, A.A.M. and Paul, S.K. (2018), “Examining price and service competition among retailers in a supply chain under potential demand disruption”, Journal of Retailing and Consumer Services, Vol. 40, pp. 40-47.
[6] Anandhi, S., Anitha, R. and Sureshkumar, V. (2016), “An RFID cloud authentication protocol for object tracking system in supply chain management”, Paper presented at the Annual Convention of the Computer Society of India
[7] Attia, A. and Salama, I. (2018), “Knowledge management capability and supply chain management practices in the Saudi food industry”, Business Process Management Journal, Vol. 24 No. 2, pp. 459-477.
[8] Azizi, R., Maleki, M., Moradi-Moghadam, M. and Cruz-Machado, V. (2016), “The impact of knowledge management practices on supply chain quality management and competitive advantages”, Management and Production Engineering Review, Vol. 7 No. 1, pp. 4-12. .
[9] Bagal, H.A., Soltanabad, Y.N., Dadjuo, M., Wakil, K. and Ghadimi, N. (2018), “Risk-assessment of photovoltaic-wind-battery-grid based large industrial consumer using information gap decision theory”, Solar Energy, Vol. 169, pp. 343-352.
[10] Chin, W.W. and Dibbern, J. (2010), “An introduction to a permutation based procedure for multi-group PLS analysis: results of tests of differences on simulated data and a cross cultural analysis of the sourcing of information system services between Germany and the USA”, In Handbook of Partial Least Squares, Springer, pp. 171-193
[11] Fernandes, C., Ferreira, J.J. and Marques, C.S. (2015), “Innovation management capabilities in rural and urban knowledge intensive business services: empirical evidence”, Service Business, Vol. 9 No. 2, pp. 233-256.
[12] Fouladi, P. and Jafari Navimipour, N. (2017), “Human resources ranking in a cloud-based knowledge sharing framework using the quality control criteria”, Kybernetes, Vol. 46 No. 5, pp. 876-892.
[13] Gou, J., Li, N., Lyu, T., Lyu, X. and Zhang, Z. (2019), “Barriers of knowledge transfer and mitigating strategies in collaborative management system implementations”, VINE Journal of Information and Knowledge Management Systems, Vol. 49 No. 1, pp. 2-20
[14] Green, G., Liu, L. and Qi, B. (2009), “Knowledge-based management information systems for the effective business performance of SMEs”, Journal of International Technology and InformationManagement, Vol. 18 No. 2, p. 201.
[15] Hair, J. F., Hult, G. T. M., Ringle, C. M.(2021) Partial Least Squares Structural Equation Modeling, 3nd Edition, Sage Publications Inc., Thousand Oaks, CA.
[16] Hall, Stuart (1997). The Work of Representation, In Cultural Representation and Signifying Practice, Sage Publication.
[17] Harrison, C., Eckman, B., Hamilton, R., Hartswick, P., Kalagnanam, J., Paraszczak, J., Williams, P.,(2010). Foundations for smarter cities. IBM J. Res. Dev. 54 (4), 1–16.
[18] Hult, G.T.M., Ketchen, D.J. and Arrfelt, M. (2007), “Strategic supply chain management: improving performance through a culture of competitiveness and knowledge development”, Strategic Management Journal, Vol. 28 No. 10, pp. 1035-1052.
[19] Jalalifar, S., Hafshejani, K.F. and Movahedi, M. (2013), “Evaluation of the effective barriers in GSCM implementation using DEMATEL method (case study: Iran Khodro CO)”. Nature and Science, Vol. 11 No. 11, pp. 95-102.
[20] Jnr, B.A., Majid, M.A. and Romli, A. (2018), “A trivial approach for achieving smart city: a way forward towards a sustainable society”, Paper presented at the 2018 21st Saudi Computer Society National Computer Conference (NCC).
[21] Kaliani Sundram, V.P., Chandran, V. and Awais Bhatti, M. (2016), “Supply chain practices and performance: the indirect effects of supply chain integration”, Benchmarking: An International Journal, Vol. 23 No. 6, pp. 1445-1471
[22] Kamble, S.S., Gunasekaran, A., Parekh, H. and Joshi, S. (2019), “Modeling the internet of things adoption barriers in food retail supply chains”, Journal of Retailing and Consumer Services, Vol. 48, pp. 154-168.
[23] Khodaei, H., Hajiali, M., Darvishan, A., Sepehr, M. and Ghadimi, N. (2018), “Fuzzy-based heat and power hub models for cost-emission operation of an industrial consumer using compromise programming”, Applied Thermal Engineering, Vol. 137, pp. 395-405.
[24] Kochan, C.G., Nowicki, D.R., Sauser, B. and Randall, W.S. (2018), “Impact of cloud-based information sharing on hospital supply chain performance: a system dynamics framework”, International Journal of Production Economics, Vol. 195, pp. 168-185.
[25] Kopczak, L.R. and Johnson, M.E. (2003), ‘The Supply-chain Management Effect’, MIT Sloan Management Review, 44(3): pp.27-40
[26] Małecki, K., Iwan, S. and Kijewska, K. (2014), “Influence of intelligent transportation systems on reduction of the environmental negative impact of urban freight transport based on Szczecin example”, Procedia – Social and Behavioral Sciences, Vol. 151, pp. 215-229.
[27] Małecki, K., Iwan, S., & Kijewska, K. (2014). Influence of Intelligent Transportation Systems on Reduction of the Environmental Negative Impact of Urban Freight Transport Based on Szczecin Example. Procedia - Social and Behavioral Sciences, 151, pp.215–229.
[28] Navimipour, N.J. and Charband, Y. (2016), “Knowledge sharing mechanisms and techniques in project teams: literature review, classification, and current trends”, Computers in Human Behavior, Vol. 62, pp. 730-742.
[29] Ngai, E. W. T., Cheng, T. C. E., & Ho, S. S. M. (2004). Critical success factors of web-based supply-chain management systems: an exploratory study. Production Planning & Control, 15(6),pp. 622–630
[30] Opczak, L.R. and Johnson, M.E. (2003), ‘The Supply-chain Management Effect’, MIT Sloan Management Review, 44(3): pp.27-40
[31] Papert, M. and Pflaum, A. (2017), “Development of an ecosystem model for the realization of internet of things (IoT) services in supply chain management”, Electronic Markets, Vol. 27 No. 2, pp. 175-189.
[32] Rymaszewska, A., Helo, P. and Gunasekaran, A. (2017), “IoT powered servitization of manufacturing – an exploratory case study”, International Journal of Production Economics, Vol. 192, pp. 92-105.
[33] Silva, B.N., Khan, M., Han, K., Han, (2018). Towards sustainable smart cities: a review of trends, architectures, components, and open challenges in smart cities. Sustainable Cities and Society 38, 697–713.
[34] Tenenhaus, M., Esposito Vinzi, V., Chatelin, Y.-M., & Lauro, C. (2005). PLS path modeling. Computational Statistics & Data Analysis, 48(1), 159–205.
[35] Werts, C. E., Linn, R. L., & Jöreskog, K. G. (1974). Intraclass Reliability Estimates: Testing Structural Assumptions. Educational and Psychological Measurement, 34(1), 25-33
[36] Wetzels, M., Odekerken-Schorder, G., & Van Oppen, C. (2009) Using PLS Path Modeling for Assessing Hierarchical Construct Models: Guidelines and Empirical Illustration, MIS Quarterly, 33, (33), 177-1.
[37] Wu, Y., Cegielski, C.G., Hazen, B.T. and Hall, D.J. (2013), “Cloud computing in support of supply chain information system infrastructure: understanding when to go to the cloud”, Journal of Supply Chain Management, Vol. 49 No. 3, pp. 25-41.
[38] Zhu, L., Yu, F.R., Wang, Y., Ning, B. and Tang, T. (2018), “Big data analytics in intelligent transportation systems: a survey”, IEEE Transactions on Intelligent Transportation Systems, No. 99, pp. 1-16.