کاربرد نقاط کوانتومی کربن (CQDs) در فناوری های غشایی: مروری
محورهای موضوعی : پليمرها و نانوفناوری
1 - دانشگاه بیرجند
کلید واژه: نقاط کوانتومی کربن, نقاط کوانتومی گرافن اکسید, جداسازی غشایی, ضدرسوب,
چکیده مقاله :
نقاط کوانتومی کربن (Carbon Quantum Dots)، که یک کلاس جذاب از کربنهای نانوساختار هستند، اخیراً توجه گستردهای را در زمینه فناوریهای غشایی برای کاربردهایشان در فرآیندهای جداسازی به خود جلب کردهاند. این به این دلیل است که آن ها دو مزیت منحصر به فرد دارند. تولید آن ها آسان و ارزان است، در حالی که خواص فیزیکوشیمیایی آن ها مانند اندازه های بسیار کوچک، زیست سازگاری خوب، بی اثری شیمیایی بالا، آب دوستی قابل تنظیم، غنی از گروه های عملکردی سطحی و ویژگی های ضدرسوب بسیار مطلوب هستند. محققان با استفاده از این موارد، کاربرد آن ها را در طرحهای مختلف غشاء برای اسمز معکوس (Reverse Osmosis)، اولترافیلتراسیون (Ultrafiltration)، نانوفیلتراسیون (Nonofiltration)، اسمز مستقیم (Forward Osmosis)، اسمز عقب مانده فشاری (Pressure Retarded Osmosis)، تقطیر غشایی (Membrane Distillation) و فرآیندهای نانوفیلتراسیون حلال آلی (Organic Solvent Nanofiltration) مورد بررسی قرار دادند. به طور خاص، CQDs به ویژه اکتشاف در زمینه تصفیه آب توسط فناوری های غشایی را تحریک کرده اند، زیرا زیست سازگاری مواد غشایی برای اطمینان از ایمنی آب آشامیدنی از اهمیت بالایی برخوردار است. علاوه بر این، CQDs در موقعیت مطلوبی برای دستیابی به عملکرد بی سابقه فرآیندهای جداسازی غشایی در تصفیه آب، با توجه به افزایش کارایی قابل توجه و تمایل ضدرسوب، همان طور که در تحقیق های اخیر کشف شده است، قرار دارند. در این مقاله، پیشرفت در توسعه غشاهای CQDs گنجانده شده را با بحث در مورد چالش ها و دیدگاه های آن ها بررسی شده است.
Applications of Carbon Quantum Dots (CQDs) in Membrane Technologies: A Review Carbon quantum dots (CQDs), which are a fascinating class of nanostructured carbons, have recently attracted extensive attention in the field of membrane technologies for their applications in separation processes. This is because they possess two unique advantages. Their productions are facile and inexpensive, while their physicochemical properties such as ultra-small sizes, good biocompatibility, high chemical inertness, tunable hydrophilicity, rich surface functional groups and antifouling characteristics are highly desirable. Leveraging on these, researchers have explored their utilizations in various membrane designs for reverse osmosis (RO), ultrafiltration (UF), nanofiltration (NF), forward osmosis (FO), pressure retarded osmosis (PRO), membrane distillation (MD), and organic solvent nanofiltration (OSN) processes. In particular, CQDs have especially stimulated exploration in the field of water treatment by membrane technologies since biocompatibility of membrane materials is of utmost importance to ensure safety of drinking water. In addition, CQDs are in a favorable position for achieving unprecedented performance of membrane separation processes in water treatment, in the light of substantial efficiency enhancement and antifouling propensity as discovered in recent studies. In this article, we will review the progress in the development of CQD incorporated membranes with discussions on their challenges and perspectives.
1. Baker S.N., Baker G.A., Luminescent Carbon Nanodots: Emergent Nanolights, Angewandte Chemie International Edition, 49, 6726-6744, 2010.
2. Lim S.Y., Shen W., Gao Z., Carbon Quantum Dots and Their Applications, Chemical Society Reviews, 44, 362-381, 2015.
3. Wang Y., Hu A., Carbon Quantum Dots: Synthesis, Properties and Applications, Journal of Materials Chemistry C, 2, 6921-6939, 2014.
4. Xu X., Ray R., Gu Y., Ploehn H.J., Gearheart L., Raker K., Scrivens W.A., Electrophoretic Analysis and Purification of Fluorescent Single-Walled Carbon Nanotube Fragments, Journal of the American Chemical Society, 126, 12736-12737, 2004.
5. Hutton G.A.M., Martindale B.C.M., Reisner E., Carbon Dots as Photosensitisers for Solar-Driven Catalysis, Chemical Society Reviews, 46, 6111-6123, 2017.
6. Li H., Kang Z., Liu Y., Lee S.-T., Carbon Nanodots: Synthesis, Properties and Applications, Journal of Materials Chemistry, 22, 24230-24253, 2012.
7. Li X., Rui M., Song J., Shen Z., Zeng H., Carbon and Graphene Quantum Dots For Optoelectronic and Energy Devices: A Review, Advanced Functional Materials, 25, 4929-4947, 2015.
8. Shen J., Zhu Y., Yang X., Li C., Graphene Quantum Dots: Emerging Nanolights for Bioimaging, Sensors, and Catalysis and Photovoltaic Devices, Chemical Communications, 48, 3686-3699, 2012.
9. Wang R., Lu K.-Q., Tang Z.-R., Xu Y.-J., Recent Progress in Carbon Quantum Dots: Synthesis, Properties and Applications in Photocatalysis, Journal of Materials Chemistry A, 5, 3717-3734, 2017.
10. Wu X., Tian F., Wang W., Chen J., Wu M., Zhao J.X., Fabrication of Highly Fluorescent Graphene Quantum Dots Using L-Glutamic Acid for in Vitro/in Vivo Imaging and Sensing, Journal of Materials Chemistry C, 1, 4676-4684, 2013.
11. Zhang Y., He Y.H., Cui P.P., Feng X.T., Chen L., Yang Y.Z., Liu X.G., Watersoluble, Nitrogen-Doped Fluorescent Carbon Dots For Highly Sensitive and Selective Detection of Hg2+ in Aqueous Solution, RSC Advances, 5, 40393-40401, 2015.
12. Hu S., Tian R., Dong Y., Yang J., Liu J., Chang Q., Modulation and Effects of Surface Groups on Photoluminescence and Photocatalytic Activity of Carbon Dots, Nanoscale, 5, 11665-11671, 2013.
13. Li H., Liu R., Lian S., Liu Y., Huang H., Kang Z., Near-Infrared Light Controlled Photocatalytic Activity of Carbon Quantum Dots for Highly Selective Oxidation Reaction, Nanoscale, 5, 3289-3297, 2013.
14. Demchenko P., Dekaliuk M.O., Novel Fluorescent Carbonic Nanomaterials for Sensing and Imaging, Methods and Applications in Fluorescence, 1, 042001, 2013.
15. Zhang Y., Chung T.S., Graphene Oxide Membranes for Nanofiltration, Current opinion in chemical engineering, 16, 9-15, 2017.
16. Zheng A.-X., Cong Z.-X., Wang J.-R., Li J., Yang H.-H., Chen G.-N., Highlyefficient Peroxidase-Like Catalytic Activity of Graphene Dots for Biosensing, Biosensors and Bioelectronics, 49, 519-524, 2013.
17. Nurunnabi M., Khatun Z., Huh K.M., Park S.Y., Lee D.Y., Cho K.J., Lee Y.-K., In Vivo Biodistribution and Toxicology of Carboxylated Graphene Quantum Dots, ACS Nano., 7, 6858-6867, 2013.
18. Jiang Y., Biswas P., and Fortner J.D., A Review of Recent Developments in Graphene-Enabled Membranes for Water Treatment, Environmental Science: Water Research & Technology journal, 2, 915-922, 2016.
19. Guo C.X., Zhao D., Zhao Q., Wang P., Lu X., Na+-Functionalized Carbon Quantum Dots: A New Draw Solute in Forward Osmosis for Seawater Desalination, Chemical Communications, 50, 7318-7321, 2014.
20. Lin L., Zhang S., Creating High Yield Water Soluble Luminescent Graphene Quantum Dots via Exfoliating and Disintegrating Carbon Nanotubes and Graphite Flakes, Chemical Communications, 48, 10177-10179, 2012.
21. Dong Y., Zhou N., Lin X., Lin J., Chi Y., Chen G., Extraction of Electrochemiluminescent Oxidized Carbon Quantum Dots from Activated Carbon, Chemistry of Materials, 22, 5895-5899, 2010.
22. Sun Y.-P., Zhou B., Lin Y., Wang W., Fernando K.A.S., Pathak P., Meziani M.J., Harruff B.A., Wang X., Wang H., Luo P.G., Yang H., Kose M.E., Chen B., Veca L.M., Xie S.-Y., Quantum-Sized Carbon Dots for Bright and Colorful Photoluminescence, Journal of the American Chemical Society, 128, 7756-7757, 2006.
23. Zhou J., Booker C., Li R., Zhou X., Sham T.-K., Sun X., Ding Z., An Electrochemical to Blue Luminescent Nanocrystals from Multiwalled Carbon Nanotubes (MWCNTs), Journal of the American Chemical Society, 129, 744-745, 2007.
24. Bourlinos B., Stassinopoulos A., Anglos D., Zboril R., Karakassides M., Giannelis E.P., Surface Functionalized Carbogenic Quantum Dots, Small, 4, 455-458, 2008.
25. Li H.T., He X.D., Liu Y., Huang H., Lian S.Y., Lee S.-T., Kang Z.H., One-Step Ultrasonic Synthesis of Water-Soluble Carbon Nanoparticles with Excellent Photoluminescent Properties, Carbon, 49, 605-609, 2010.
26. Liu R., Wu D., Liu S., Koynov K., Knoll W., Li Q., An Aqueous Route to Multicolor Photoluminescent Carbon Dots Using Silica Spheres as Carriers, Angewandte Chemie International Edition, 121, 4668-4671, 2009.
27. Peng H., Travas-Sejdic J., Simple Aqueous Solution Route to Luminescent Carbogenic Dots from Carbohydrates, Chemistry of Materials, 21, 5563-5565, 2009.
28. Chowdhury D., Gogoi N., Majumdar G., Fluorescent Carbon Dots Obtained From Chitosan Gel, RSC Advances, 2, 12156-12159, 2012.
29. Liu R., Zhang J., Gao M., Li Z., Chen J., Wu D., Liu P., A Facile Microwavehydrothermal Approach towards Highly Photoluminescent Carbon Dots from Goose Feathers, RSC Advances, 5, 4428-4433, 2015.
30. Mehta V.N., Jha S., Kailasa S.K., One-Pot Green Synthesis of Carbon Dots by Using Saccharum Officinarum Juice for Fluorescent Imaging of Bacteria (Escherichia Coli) and Yeast (Saccharomyces Cerevisiae) Cells, Materials Science and Engineering C, 38, 20-27, 2014.
31. Sahu S., Behera B., Maiti T.K., Mohapatra S., Simple One-Step Synthesis of Highly Luminescent Carbon Dots from Orange Juice: Application as Excellent Bioimaging Agents, Chemical Communications, 48, 8835-8837, 2012.
32. Wang J., Wang C.-F., Chen S., Amphiphilic Egg-Derived Carbon Dots: Rapid Plasma Fabrication, Pyrolysis Process, and Multicolor Printing Patterns, Angewandte Chemie International Edition, 51, 9297-9301, 2012.
33. Yang Y.H., Cui J.H., Zheng M.T., Hu C.F., Tan S.Z., Xiao Y., Yang, Q., Liu, Y.L., One-Step Synthesis of Amino-Functionalized Fluorescent Carbon Nanoparticles by Hydrothermal Carbonization of Chitosan, Chemical Communications, 48, 380-382, 2012.
34. Zhou J.J., Sheng Z.H., Han H.Y., Zou M.Q., Li C., Facile Synthesis of Fluorescent Carbon Dots Using Watermelon Peels as A Carbon Source, Materials Letters, 66, 222-224, 2012.
35. Bi R., Zhang Q., Zhang R., Su Y., Jiang, Z., Thin Film Nanocomposite Membranes Incorporated with Graphene Quantum Dots for High Flux and Antifouling Property, Journal of Membrane Science, 553, 17-24, 2018.
36. Jafari A., Kebria M.R.S., Rahimpour A., Bakeri, G., Graphene Quantum Dots Modified Polyvinylidenefluride (PVDF) Nanofibrous Membranes with Enhanced Performance for Air Gap Membrane Distillation, Chemical Engineering and Processing: Process Intensification, 126, 222-231, 2018.
37. Zhang C., Wei K., Zhang W., Bai Y., Sun Y., Gu J., Graphene Oxide Quantum Dots Incorporated Into A Thin Film Nanocomposite Membrane with High Flux and Antifouling Properties for Low-Pressure Nanofiltration, ACS Applied Materials & Interfaces, 9, 11082-11094, 2017.
38. Zhao D.L., Das S., Chung T.S., Carbon Quantum Dots Grafted Antifouling Membranes for Osmotic Power Generation via Pressure-Retarded Osmosis Process, Environmental Science & Technology, 51, 14016-14023, 2017.
39. Fathizadeh M., Tien H.N., Khivantsev K., Song Z., Zhou F., Yu M., Polyamide/Nitrogen-Doped Graphene Oxide Quantum Dots (N-GOQD) Thin Film Nanocomposite Reverse Osmosis Membranes for High Flux Desalination, Desalination, 451, 125-132, 2017.
40. Yuan Z., Wu X., Jiang Y., Li Y., Huang J., Hao L., Zhang J., Carbon Dotsincorporated Composite Membrane towards Enhanced Organic Solvent Nanofiltration Performance, J. Membr. Sci, 549, 1-11, 2018.
41. Gai W., Zhao D.L., Chung T.S., Novel Thin Film Composite Hollow Fiber Membranes Incorporated with Carbon Quantum Dots for Osmotic Power Generation, Journal of Membrane Science, 551, 94-102, 2018.
42. He Y., Zhao D.L., Chung T.S., Na+ Functionalized Carbon Quantum Dots Incorporated Thin-Film Nanocomposite Membranes for Selenium and Arsenic Removal, Journal of Membrane Science, 564, 483-491, 2018.
43. Song X., Zhou Q., Zhang T., Xu H., Wang Z., Pressure-Assisted Preparation of Graphene Oxide Quantum Dot-Incorporated Reverse Osmosis Membranes: Antifouling and Chlorine Resistance Potentials, Journal of Materials Chemistry A, 4, 16896-16905, 2016.
44. Ostuni E., Chapman R.G., Holmlin R.E., Takayama S., Whitesides G.M., A Survey of Structure-Property Relationships of Surfaces That Resist the Adsorption of Protein, Langmuir, 17, 5605-5620, 2001.
45. Jiang L.Y., Chung T.S., Cao C., Huang A., Kulprathipanja S., Fundamental Understanding of Nano-Sized Zeolite Distribution in the Formation of The Mixed Matrix Single- and Dual-Layer Asymmetric Hollow Fiber Membranes, Journal of Membrane Science, 252, 89-100, 2005.
46. Safaei B., Youssefi M., Rezaei B., Irannejad N., Synthesis and Properties of Photoluminescent Carbon Quantum Dot/Polyacrylonitrile Composite Nanofibers, Smart Science, 6, 117-124, 2017.
47. Colburn A., Wanninayake N., Kim D.Y., Bhattacharyya D., Cellulose-Graphene Quantum Dot Composite Membranes Using Ionic Liquid, Journal of Membrane Science, 556, 293-302, 2018.
48. Zeng Z., Yu D., He Z., Liu J., Xiao F.X., Zhang Y., Wang R., Bhattacharyya D., Tan T.T.Y., Graphene Oxide Quantum Dots Covalently Functionalized PVDF Membrane with Significantly-Enhanced Bactericidal and Antibiofouling Performances, Scientific Reports, 6, 20142-20152, 2016.
49. Chen F., Gao W., Qiu X., Zhang H., Liu L., Liao P., Fu W., Luo Y., Graphene Quantum Dots in Biomedical Applications: Recent Advances and Future Challenges, Frontiers in Laboratory Medicine, 1, 192-199, 2017.
50. Hui L., Huang J., Chen G., Zhu Y., Yang L., Antibacterial Property of Graphene Quantum Dots (Both Source Material and Bacterial Shape Matter), ACS Applied, 8, 20-25, 2016.
51. Zhou J., Wang J., Hou J., Zhang Y., Liu J., Bruggen Van der B., Graphenebased Antimicrobial Polymeric Membranes: A Review, Journal of Materials Chemistry A, 5, 6776-6793, 2017.