بررسی عملکرد جذب خط انتقال ریزموج چاپشده به روش جوهرافشانی در باند S
محورهای موضوعی : مهندسی برق و کامپیوترمحمد مومنی نسب 1 , سیدمنصور بیدکی 2 , محسن هادی زاده 3 , مسعود موحدی 4
1 - دانشگاه یزد
2 - دانشگاه يزد
3 - دانشگاه یزد
4 - دانشگاه یزد
کلید واژه: خط انتقالچاپ جوهرافشانجوهرهای واکنشینانو ذرات نقرهریزموج,
چکیده مقاله :
فناوری چاپ جوهرافشان یکی از نویدبخشترین روشهای چاپ است که ساخت الگوهای رسانا را در یک مرحله و به طور مستقیم امکانپذیر کرده است. در این پژوهش با به کارگیری جوهرهای واکنشدهنده بر پایه آب و روش چاپ جوهرافشان، خط انتقال ریزموج بر روی زیرلایه راجرز C4003RO ساخته شد. ساختار انتقال ریزموج ساختهشده شامل خط نقرهای چاپشده به روش جوهرافشان، لایه دیالکتریک و صفحه فلزی زمین است. میزان رسانایی خط چاپشده به روش چهار الکترود تماسی اندازهگیری شد. نرخ جذب امواج الکترومغناطیسی خط انتقال چاپشده با توجه به میزان رسانایی محاسبهشده، با نرمافزار شبیهساز ساختارهای فرکانس بالا، شبیهسازی گردید که همخوانی بسیار خوبی را با نرخ جذب اندازهگیری شده در گستره فرکانس GHz 4-2 (باند S) دارد.
Ink-jet printing technology is one of the most promising printing techniques enabling fabrication of conductive patterns in a one-step and direct process. In this study, a microwave transmission line is fabricated on RO4003C substrate using water-based reactive inks and ink-jet printing technique. The fabricated transmission line structure includes an ink-jet printed silver line, a dielectric layer, and a continuous metallic ground plate. The conductivity of the printed line is measured using Four-point probe method. The electromagnetic wave absorption rate of the printed transmission line is simulated according to the measured conductivity, which proves a good agreement with the measured absorption rate at S band (2-4 GHz frequency range).
[1] Transmission Line Theory. Available from: http://deltauniv.edu.eg/new/engineering/wp-content/uploads/chap.3.pdf, [cited 2019 Sep 2nd].
[2] Transmission Lines. Available from: http://www.eas.uccs.edu/~mwickert/ece3110/lecture_notes/N3110_2.pdf, [cited 2019 Sep 2nd].
[3] RamezaniBoldaji, K., M. Movahhedi, and A. GhafoorzadeYazdi, An Ultra Wide Bandpass Filter with Wide Stop Band Based on Metamaterial Structures. Journal of Electrical Engineering, 49(1): p. 191-199, 2019.
[4] Fesharaki, F., et al. Mode-selective transmission line for DC-to-THz super-broadband operation. in 2016 IEEE MTT-S International Microwave Symposium (IMS). IEEE, 2016.
[5] Alibakhshi‐Kenari, M., et al., Compact antenna based on a composite right/left‐handed transmission line. Microwave and Optical Technology Letters, 57(8): p. 1785-1788, 2015.
[6] Naqui, J., M. Durán-Sindreu, and F. Martín, Modeling split-ring resonator (SRR) and complementary split-ring resonator (CSRR) loaded transmission lines exhibiting cross-polarization effects. IEEE Antennas and Wireless Propagation Letters, 12: p. 178-181, 2013.
[7] Heidari, A.A., Design and Implementation of a Circularly Polarized Microstrip Patch Antenna for GPS Application with Input VSWR Tuning Capability. Iranian Journal of Electrical and Computer Engineering, 5(3): p. 168, 2008.
[8] Bidoki, S.M., et al., Inkjet printing of conductive patterns on textile fabrics. AATCC review, 5(6): p. 11, 2005.
[9] Kao, H.-l., et al., Inkjet-printed silver films on textiles for wearable electronics applications. Surface and Coatings Technology, 362: p. 328-332, 2019.
[10] Huber, B., et al., Rotate-to-bend setup for fatigue bending tests on inkjet-printed silver lines. Flexible and Printed Electronics, 3(3): p. 035005, 2018.
[11] Sim, S.-m., et al., RF performance of ink-jet printed microstrip lines on rigid and flexible substrates. Microelectronic Engineering, 168: p. 82-88, 2017.
[12] Sim, S.-m., et al., Transmission line printed using silver nanoparticle ink on FR-4 and polyimide substrates. Micro and Nano Systems Letters, 4(1): p. 7, 2016.
[13] Wang, J., S. Lam, and E.G. Lim. RF performance evaluation of microstrip lines printed on flexible polyethylene terephthalate (PET) films. in 2015 IEEE MTT-S International Microwave Workshop Series on Advanced Materials and Processes for RF and THz Applications (IMWS-AMP). IEEE, 2015.
[14] Fatemeh Mohtaram, et al., The Development of Textile Based Microstrip Antenna Using Inkjet Printing. Journal of Advanced Materials In Engineering, 33(3): p. 61-78, 2015.
[15] Camarchia, V., et al., Demonstration of inkjet-printed silver nanoparticle microstrip lines on alumina for RF power modules. Organic Electronics, 15(1): p. 91-98, 2014.
[16] Belhaj, M.M., et al. Inkjet printed flexible transmission lines for high frequency applications up to 67 GHz. in 2014 44th European Microwave Conference. IEEE, 2014.
[17] Bidoki, S., et al., Ink-jet fabrication of electronic components. Journal of Micromechanics and Microengineering, 17(5): p. 967, 2007.
[18] Bidoki, S.M., J. Nouri, and A. Heidari, Inkjet deposited circuit components. Journal of Micromechanics and Microengineering, 20(5): p. 055023, 2010.
[19] Nouri, J., S.M. Bidoki, and A.A. Heidari, Printing Conductive Lines and Surfaces on Different Substrates Using Inkjet Printing Method. Iranian Journal of Electrical and Computer Engineering,. 9(2): p. 85, 2012.
[20] Simulator, H.F.S., Ansoft corp. Pittsburgh, PA, 2012.
[21] Sheet, R.R.L.D., Rogers Corp., Chandler, AZ, USA, 2018.
[22] Momeni-Nasab, M., S.M. Bidoki, and A.A. Heidari, Inkjet-Fabricated Capacitors on Paper and Textile Fabrics. JOURNAL OF TEXTILES AND POLYMERS, 7(1): p. 45-52, 2019.
[23] Webster, J.G., Electrical measurement, signal processing, and displays. CRC Press, 2003.