مدولاسیون فضایی پیشرفته
محورهای موضوعی : مهندسی برق و کامپیوترعلیاعظم عباسفر 1 , سیدحسن تفرشیان 2
1 - دانشگاه تهران
2 - دانشگاه تهران
کلید واژه: مدولاسیون فضاییASMMIMOبازدهی طیفی بالاپیچیدگی گیرنده,
چکیده مقاله :
در این مقاله روش جدیدی با نام مدولاسیون فضایی پیشرفته (ASM) را برای به کارگیری در سیستمهای MIMO پیشنهاد میکنیم. مدولاسیون فضایی پیشرفته با استفاده از تقسیمکننده توان و تعیین فاز آنتنهای فعال، بازدهی طیفی را نسبت به مدولاسیون فضایی معمولی افزایش میدهد. استفاده از تقسیمکننده توان به ما اجازه میدهد در آن واحد تعداد بیشتری آنتن فعال داشته باشیم، در حالی که همچنان یک زنجیره RF بیشتر نداریم. با تخصیصدادن بیتهایی از اطلاعات به فاز آنتنهای فعال نیز دوباره میتوانیم بیتهای فضایی بیشتری ارسال کنیم. در ادامه با استفاده از روشهای مونتکارلو عملکرد سیستم پیشنهادی را شبیهسازی کرده و آن را با مدولاسیون فضایی معمولی و دیگر تکنیکهای MIMO از قبیل کدهای بلوکی فضا- زمان متعامد و V-BLAST مقایسه نمودهایم.
In this paper, we present a new scheme named advanced spatial modulation for multiple input multiple output (MIMO) systems. Advanced spatial modulation achieves more spectral efficiency than ordinary spatial modulation with using power divider and set the phase of active transmit antennas. Using Power divider enable us to have more than one active antenna in a time slot with only one RF-chain in transmitter. Additionally, we can allocate more spatial bits with map information bits into the phase of the transmit antenna. Then, the performance of the proposed system is simulated and is compared with ordinary spatial modulation and some MIMO techniques such as orthogonal space time block code and V-BLAST.
[1] R. Y. Mesleh, H. Haas, S. Sinanovic, C. W. Ahn, and S. Yun, "Spatial modulation," IEEE Trans. on Vehicular Technology, vol. 57, no. 4, pp. 2228-2241, Jul. 2008.
[2] J. Jeganathan, A. Ghrayeb, L. Szczecinski, and A. Ceron, "Space shift keying modulation for MIMO channels," IEEE Trans. on Wireless Communications, vol. 8, no. 7, pp. 3692-3703, Jul. 2009.
[3] S. Sugiura, S. Chen, and L. Hanzo, "A unified MIMO architecture subsuming space shift keying, OSTBC, BLAST and LDC," in Proc. IEEE 72nd Vehicular Technology Conf.-Fall, 5 pp., Ottawa, Canada, 6-9 Sept.. 2010.
[4] R. Mesleh, S. S. Ikki, and H. M. Aggoune, "Quadrature spatial modulation," IEEE Trans. on Vehicular Technology, vol. 64, no. 6, pp. 2738-2742, Jun. 2015.
[5] J. Jeganathan, A. Ghrayeb, and L. Szczecinski, "Spatial modulation: optimal detection and performance analysis," IEEE Communications Letters, vol. 12, no. 8, pp. 545-547, Aug. 2008.
[6] J. Wang, S. Jia, and J. Song, "Generalised spatial modulation system with multiple active transmit antennas and low complexity detection scheme," IEEE Trans. on Wireless Communications, vol. 11, no. 4, pp. 1605-1615, Apr. 2012.
[7] T. Datta and A. Chockalingam, "On generalized spatial modulation," in Proc. IEEE Wireless Communications and Networking Conf., WCNC’13, pp. 2716-2721, Shanghai, China, 7-10 Apr. 2013.
[8] M. Rahman, R. Ramirez-Gutierrez, T. A. Tetzlaff, and F. Sheikh, "Generalised spatial modulation with LR-aided K-best decoder for MIMO systems," Signal Processing: An International J., vol. 12, no. 1, pp. 1-18, Apr. 2018.
[9] A. Younis, S. Sinaovic, M. Di Renzo, R. Mesleh, and H. Haas, "Generalised sphere decoding for spatial modulation," IEEE Trans. on Communication, vol. 16, no. 7, pp. 2805-2816, Jul. 2013.
[10] C. Li, Y. Huang, M. Di Renzo, J. Wang, and Y. Cheng, "Low-complexity ML detection for spatial modulation MIMO with APSK constellation," IEEE Trans. on Vehicular Technology, vol. 64, no. 9, pp. 4315-4321, Sep. 2015.
[11] C. M. Yu, et al., "Compressed sensing detector design for space shift keying in MIMO systems," IEEE Communications Letters, vol. 16, no. 10, pp. 1556-1559, Oct. 2012.
[12] D. Tse and P. Viswanath, Fundamantals of Wireless Communication, Cambridge University Press, 2005.
[13] P. Yang, Y. Xiao, Y. Yu, and S. Li, "Adaptive spatial modulation for wireless MIMO transmission systems," IEEE Communications Letters, vol. 15, no. 6, pp. 602-604, Jun. 2011.
[14] R. Rajashekar, K. V. S. Hari, and L. Hanzo, "Antenna selection in spatial modulation systems," IEEE Communications Letters, vol. 17, no. 3, pp. 521-524, Mar. 2013.
[15] R. Mesleh, S. S. Ikki, and H. M. Aggoune, "Quadrature spatial modulation," IEEE Trans. on Vehicular Technology, vol. 64, no. 6, pp. 2738-2742, Jun. 2015.
[16] A. Younis, R. Mesleh, and H. Haas, "Quadrature spatial modulation over Nakagami-m fading channel," IEEE Trans. on Vehicular Technology, vol. 65, no. 12, pp. 10227-10231, Dec. 2016.
[17] N. Ishikawa, R. Rajashekar, S. Sugiura, and L. Hanzo, "Generalized spatial modulation based reduced-RF-chain millimeter-wave communications," IEEE Trans. on Vehicular Technology, vol. 66, no. 1, pp. 879-883, Jan. 2017.
[18] A. Stavridis, S. Sinanovic, M. Di Renzo, H. Haas, and P. Grant, "An energy saving base station employing spatial modulation," in Proc. IEEE 17th Int. Workshop on Computer Aided Modeling and Design of Communication Links and Networks, CAMAD’12, pp. 231-235, Barcelona, Spain, 17-19 Sept.. 2012.
[19] E. Basar, U. Aygolu, E. Panayirci, and H. V. Poor, "Performance of spatial modulation in the presence of channel estimation error," IEEE Communications Letter, vol. 16, no. 2, pp. 176-179, Feb. 2012.