محاسبه تلفات سیمپیچیهای ترانسفورماتور چندسیمپیچه کششی با کمک یک روش شبهعددی
محورهای موضوعی : مهندسی برق و کامپیوترداود عزیزیان 1 , گئورك قرهپتيان 2
1 - دانشگاه آزاد اسلامی واحد ابهر
2 - دانشگاه صنعتي اميرکبير
کلید واژه: ترانسفورماتور چندسیمپیچهسیستم کششیمدلسازی الکترومغناطیسیتلفات سیمپیچیهاروش شبهعددی,
چکیده مقاله :
امروزه ترانسفورماتورهای چندسیمپیچه به صورت قابل ملاحظهای در سیستمهای قدرت، بهخصوص صنایع ریلی و کارخانههای فولادسازی مورد توجه متخصصان و طراحان شبکه قرار گرفتهاند. ترانسفورماتورهای چندسیمپیچه مورد استفاده در سیستمهای ریلی (کششی)، دارای ساختار ویژه دوطبقه بوده و از لحاظ حرارتی و مغناطیسی با مشکلات و پیچیدگیهای بیشتری نسبت به انواع متداول دوسیمپیچه مواجه هستند. بنابراین با توجه به اهمیت محاسبه تلفات (حرارت تولیدی) سیمپیچیها (بهعنوان مقدمه محاسبات حرارتی) در این نوع از ترانسفورماتورها، در تحقیق حاضر یک روش شبهعددی جهت تحلیل رفتار الکترومغناطیسی ترانسفورماتور چندسیمپیچه دوطبقه ارائه شده است. با تلفیق روش اجزای محدود و روش تحلیلی، توزیع تلفات سیمپیچیها، مرتبط با جریانهای فوکو، محاسبه و از مقایسه آن با نتایج آزمایشگاهی، دقت و اعتبار مدلسازی تأیید میشود. چنانچه نشان داده شده است، روش ارائهشده، روشی کارامد جهت مدلسازی الکترومغناطیسی و محاسبه تلفات در ترانسفورماتور چندسیمپیچه دوطبقه است. در ادامه، تلفات سیمپیچیهای ترانسفورماتور چندسیمپیچه دوطبقه با نتایج ترانسفورماتورهای دوسیمپیچه سنتی معادل مقایسه شده و نتایج مورد بحث و بررسی قرار گرفتهاند. در انتها نیز ارتباط تلفات سیمپیچیهای این ترانسفورماتور با فرکانس مطالعه شده است.
Nowadays, multi-winding transformers are widely used in power systems, especially in traction networks and steel producing companies. The multi-winding transformers have special geometry. They encounter with serious problems and difficulties in design procedure in comparison with conventional two-winding transformers. Considering the importance of windings losses (and the generated heat), the current research firstly focuses on thermal calculations in this type of transformers, also introduces a semi-numerical technique for electromagnetic analysis of split-winding traction system transformer. Combining finite element and analytical methods, the windings losses distribution due to eddy currents is calculated and the modeling results are validated using the experimental results. As shown, the introduced semi-numerical method is a powerful technique for electromagnetic modeling and winding losses calculations in split-winding transformers. Also, the winding losses of the split-winding transformer are discussed and compared to the conventional two-winding transformer results. Finally, the relation between the winding losses and frequency is studied in this paper.
[1] D. Azizian, M. Bigdeli, and J. Faiz, "Design optimization of cast-resin transformer using nature inspired algorithms," Arabian J. for Science and Engineering, vol. 41, no. 9, pp. 3491-3500, Sep. 2016.
[2] L. W. Pierce, "Thermal consideration in specifying dry-type transformers," IEEE Trans. on Industry Applications, vol. 30, no. 4, pp. 1090-1097, Jul./Aug. 1994.
[3] H. G. Cho, U. Y. Lee, S. S. Kim, and Y. D. Park, "The temperature distribution and thermal stress analysis of pole cast resin transformer for power distribution," in Proc. IEEE Conf. Int. Symp. on Electrical Insulation, pp. 384-386, Boston, MA, USA, 7-10 Apr. 2002.
[4] L. W. Pierce, "An investigation of the temperature distribution in cast-resin transformer windings," IEEE Trans. on Power Delivery, vol. 7, no. 2, pp. 920-926, Apr. 1992.
[5] F. Nabhani, S. Hodgson, and K. Warnakulasuri, "Estimation of temperature rise in MVA range dry-type transformers and practical verification based on simulated loading," in Proc. World Congress on Engineering, vol. 1, 6 pp., London, U.K, 1-3 Jul. 2015.
[6] A. Najafi and I. Iskender, "Thermal modeling and electromagnetic analysis of 1000 kVA distribution transformer based on electrical-termal equivalent circuit and FEM," Global Advanced Research J. of Engineering, Technology and Innovation, vol. 4, no. 2, pp. 24-30, Feb. 2015.
[7] E. Rahimpor and D. Azizian, "Analysis of temperature distribution in cast-resin dry-type transformers," Electrical Engineering, vol. 89, no. 4, pp. 301-309, Mar. 2007.
[8] D. Azizian, "Temperature prediction in cast-resin transformer due to non-linear loads," J. of Electrical Systems, vol. 10, no. 3, pp. 23-249, Dec. 2014.
[9] M. Eslamian, B. Vahidi, and A. Eslamian, "Thermal analysis of cast-resin dry-type transformers," Energy Conversion and Management, vol. 52, no. 7, pp. 2479-2488, Jul. 2011.
[10] D. Azizian and M. Bigdeli, "A new cast-resin transformer thermal model based on recurrent neural networks," Archives of Electrical Engineering (AEE), vol. 66, no. 1, pp. 17-28, Mar. 2017.
[11] M. A. F. Finocchio, J. J. Lopes, J. A. de Franca, J. C. Piai, and J. F. Mangili Jr, "Neural networks applied to the design of dry-type transformers: an example to analyze the winding temperature and elevate the thermal quality," International Trans. on Electrical Energy Systems, vol. 27, no. 3, Article No. e2257, Mar. 2017.
[12] D. Azizian, "Windings temperature prediction in split-winding traction transformer," Turkish J. of Electrical Engineering & Computer Sciences, vol. 24, no. 4, pp. 3011-3022, Apr. 2016.
[13] د. عزیزیان، "مدلسازی حالت گذرای حرارتی در ترانسفورماتور چندسیمپیچه دوطبقه مبتنی بر روش تفاضلات محدود و شبکههای عصبی مصنوعی،" نشريه انجمن مهندسین برق و الکترونیک ایران، دوره 15، شماره 3، صص. 32-23، پائيز 1397.
[14] I. K. Badstubner, R. Burkart, C. Dittl, and A. Musing, "A fast method for the calculation of foil winding losses," in Proc. 17th European Conf. on Power Electronics and Applications, 10 pp., Geneva, Switzerland, 8-10 Sept. 2015.
[15] J. Zhang, W. Yuan, H. Zeng, and Z. Qian, "Simplified 2-D analytical model for winding loss analysis of flyback transformers," J. of Power Electronics, vol. 12, no. 6, pp. 960-973, Nov. 2012.
[16] M. C. Hlatshway, The Computation of Winding Eddy Losses in Power Transformers Using Analytical and Numerical Method, MSc. Thesis, University of Witwatersrand, Gauteng, South Africa, WA, 2013.
[17] C. R. Sullivan, "Computationally efficient winding loss calculation with multiple windings, arbitrary waveforms, and two-dimensional or three-dimensional field geometry," IEEE Trans. on Power Electronics, vol. 16, no. 1, pp. 142-150, Jan. 2001.
[18] A. Najafi, I. Iskender, B. Dokmetas, and S. A. Hashjin, "Distribution transformer losses calculation based on TSFEM," International J. of Computing, Communications & Instrumentation Engineering, vol. 2, no. 2, pp. 224-227, 2015.
[19] D. Azizian, "Nonlinear behavior analysis of split-winding dry-type transformer using a new star model and a coupled field-circuit approach," Archives of Electrical Engineering, vol. 65, no. 4, pp. 773-787, Nov. 2016.
[20] ع. ا. نصیری، ع. م. رنجبر، ف. فقیهی و س. سلیمانی، "تحلیل سهبعدی نیروهای الکترومکانیکی ترانسفورماتور سهفاز فشارمتوسط تحت تأثیر جریان هجومی به روش آنالیز اجزای محدود با ارائه ساختار جدید سیمپیچی،" نشریه مهندسی برق و مهندسی کامپیوتر ایران، سال 14، شماره 2- الف، صص. 109-101، تابستان 1395.
[21] س. ع. سیدی سعادتی و ا. حلوایی نیاسر، "طراحی، بهینهسازی و تحلیل اجزای محدود موتور سنکرون آهنربای دایم نوع دیسکی،" نشریه مهندسی برق و مهندسی کامپیوتر ایران، سال 14، شماره 4- الف، صص. 297-289، زمستان 1395.
[22] م. حقپرست، ص. بروجنی تقیپور و ع. کارگر، "بهبود ساختار هندسی رتور ماشین سنکرون رلوکتانسی با استفاده ترکیبی از شبکه عصبی، الگوریتم ژنتیک و روش اجزای محدود،" نشریه مهندسی برق و مهندسی کامپیوتر ایران، سال 11، شماره 1- الف، صص. 34-28، بهار 1392.