کنترل پیشبین مبدلهای چندسطحی چندبخشی با بهرهگیری از الگوریتم رمزگشایی کروی
محورهای موضوعی : مهندسی برق و کامپیوترحسین شفائیه هیق 1 , رضا محبوبی اسفنجانی 2 , محمد هجری 3
1 - دانشگاه صنعتی سهند
2 - دانشگاه صنعتی سهند
3 - دانشگاه صنعتی سهند
کلید واژه: بهینهسازی رمزگشایی کرویکنترل پیشبینمبدل چندسطحی چندبخشی,
چکیده مقاله :
در مبدلهای چندسطحی چندبخشی با افزایش تعداد سطوح ولتاژ، کیفیت شکل موج خروجی بهبود مییابد و کلیدهای نیمههادی قدرت، ولتاژ کمتری را تحمل میکنند؛ اما با افزایش تعداد اجزای مدار، تعیین استراتژی کلیدزنی بسیار پیچیده میشود. در این مقاله، در چارچوب روش کنترل پیشبین با مجموعة کنترل متناهی، یک روش کارا برای تنظیم جریان بار، تعادل ولتاژ خازنها و همچنین کنترل جریان گردشی در مبدلهای چندسطحی ارائه میشود که از الگوریتم رمزگشایی کروی برای انجام محاسبات بهینهسازی استفاده میکند. ویژگی مهم رویکرد مورد استفاده، کاهش قابل توجه حجم محاسبات لازم در الگوریتم کنترل است که امکان استفاده از آن را برای مبدلهای چندبخشی با تعداد سطوح ولتاژ بالا و برای افقهای پیشبینی طولانی فراهم میکند. روش پیشنهادی بر روی یک نوع مبدل سهسطحی، شبیهسازی و مزایای آن در مقایسه با روشهای موجود نشان داده میشود.
Modular Multilevel Converters, by increasing the number of voltage levels the quality of output waveform is improved and the semiconductor switches tolerate low voltage values. However, design of switching strategy in these complicated circuits is challenging. In this paper, based on sphere decoding algorithm, a predictive controller with finite control set is proposed to regulate load current while minimizing both capacitor voltage variations and circulating currents. The suggested scheme decreases the computational burden of optimization stage which is considerable for long prediction horizons and modular converters with high number of voltage levels. The suggested scheme is simulated for a practical modular multilevel converter to demonstrate its performance compared to some rival methods.
[1] S. Debnath, J. Qin, B. Bahrani, M. Saeedifard, and P. Barbosa, "Operation, control, and applications of the modular multilevel converter: a review," IEEE Trans. Power Electron., vol. 30, no. 1, pp. 37-53, Jan. 2014.
[2] M. Perez, S. Bernet, J. Rodriguez, S. Kouro, and R. Lizana, "Circuit topologies, modelling, control schemes and applications of modular multilevel converters," IEEE Trans. Power Electron, vol. 30, no. 1, pp. 4-17, Jan. 2014.
[3] Z. Li, P. Wang, Z. Chu, H. Zhu, Y. Luo, and Y. Li, "An inner current suppressing method for modular multilevel converters," IEEE Trans. Power Electron., vol. 28, no. 11, pp. 4873-4879, Nov. 2013.
[4] A. Hassanpoor, S. Norrga, H. Nee, and L. Angquist, "Evaluation of different carrierbased PWM methods for modular multilevel converters for HVDC application," in Proc. 38th Ann. Conf. on IEEE Ind. Electron. Society, IECON'12, pp. 388-393, Montreal, Canada, 25-28 Oct. 2012.
[5] M. Hagiwara and H. Akagi, "Control and experiment of pulsewidth modulated modular multilevel converters," IEEE Trans. Power Electron., vol. 24, no. 7, pp. 1737-1746, Jul. 2009.
[6] D. E. Quevedo, R. P. Aguilera, and T. Geyer, Predictive Control in Power Electronics and Drives: Basic Concepts, Theory, and Methods, Springer, 2014.
[7] F. Hassan and W. Crookes, "Direct model predictive control for medium voltage modular multi-level STATCOM with and without energy storage," in Proc. IEEE Int. Conf. Ind. Technol., pp. 932-937, Athens, Greece, 19-21 Mar. 2012.
[8] T. Geyer, "A comparison of control and modulation schemes for mediumvoltage drives: emerging predictive control concepts versus PWM-based schemes," IEEE Trans. Ind. Appl., vol. 47, no. 3, pp. 1380-1389, May-Jun. 2011.
[9] J. Bocker, B. Freudenberg, A. The, and S. Dieckerhoff, "Experimental comparison of model predictive control and cascaded control of the modular multilevel converter," IEEE Trans. Power Electron., vol. 30, no. 1, pp. 422-430, Jan. 2014.
[10] J. Rodriguez, et al., "State of the art of finite control set model predictive control in power electronics," IEEE Trans. Ind. Informat., vol. 9, no. 2, pp. 1003-1016, May 2013.
[11] L. F. Crispino and L. G. B. Rolim, "Model predictive control of a modular multilevel converter combined with sorting methods," in Proc. 12th IEEE Int. Conf. on Ind. Applications, INDUSCON'16, 6 pp., Curitiba, Brazil, 20-23 Nov. 2016.
[12] B. S. Riar, T. Geyer, and U. K. Madawala, "Model predictive direct current control of modular multilevel converters: modeling, analysis, and experimental evaluation," IEEE Trans. Power Electron., vol. 30, no. 1, pp. 431-439, Jan. 2015.
[13] B. S. Riar, Design and Control of Modular Multilevel Converters, Ph.D. Thesis, University of Auckland, 2015.
[14] T. Geyer and D. E. Quevedo, "Multistep finite control set model predictive control for power electronics," IEEE Trans. Power Electron., vol. 29, no. 12, pp. 6836-6846, Dec. 2014.
[15] R. P. Aguilera, et al., "Model predictive control of cascaded H-bridge inverters based on a fast-optimization algorithm," in Proc. 41st IEEE Ann. Conf. of the Ind. Electron. Society, INDUSCON'15, pp. 4003-4008, Curitiba, Brazil, 20-23 Nov. 2015.
[16] P. Cortes, et al., "Guidelines for weighting factors design in model predictive control of power converters and drives," in Proc. IEEE Int. Conf. Ind. Technol., ICIT'09, 7 pp., Gippsland, Australia, 10-13 Feb. 2009.
[17] R. A. Horn and C. R. Johnson, Matrix Analysis, Cambridge, U. K.: Cambridge Univ. Press, 1985.
[18] L. G. Mitten, "Branch-and-bound methods: general formulation and properties," Op. Res., vol. 18, no. 1, pp. 24-34, Jan.-Feb. 1970.
[19] B. Hassibi and H. Vikalo, "On the sphere-decoding algorithm I, expected complexity," IEEE Trans. Signal Process., vol. 53, no. 8, pp. 2806-2818, Aug. 2005.
[20] T. Geyer and D. E. Quevedo, "Performance of multistep finite control set model predictive control for power electronics," IEEE Trans. Power Electron., vol. 30, no. 3, pp. 1633-1644, Mar. 2015.