مروری بر میکروحبابها و کاربردهای آن در پزشکی
محورهای موضوعی :حامد عبدی پور 1 , مرتضی نصیری 2 , فرهنگ عباسی 3
1 - دانشگاه صنعتی سهند تبریز
2 - دانشگاه صنعتی سهند تبریز
3 - دانشگاه صنعتی سهند تبریز
کلید واژه: میکروحباب نانو امولسیون فراصوت دارورسانی تصویربرداری,
چکیده مقاله :
یکی از روش های جدیدی که در پزشکی بخصوص در دارورسانی مورد توجه قرار گرفته است ترکیب فنّاوری فراصوت با میکروحباب ها (microbubbles) است که دارای ویژگی های منحصر به فردی است. میکروحباب ها ذرات کروی پاسخگو به امواج فراصوت هستند که از یک هستهی گازی و از یک پوسته تشکیل شدهاند که کاربردهای بسیاری در پزشکی، تصویربرداری، دارورسانی، تصفیه آب و غیره دارند. پوسته و هستههای مختلفی برای ساخت میکروحبابها مورد استفاده قرار گرفته است که هر کدام دارای مزایا و معایبی هستند. در این مقاله پس از معرفی میکروحبابها به بررسی پدیده های حاکم در برهم کنش میکروحباب ها با امواج فراصوت پرداخته می شود. مواد مختلفی که برای ساخت میکروحباب ها استفاده شده اند بررسی می شود و در نهایت کاربردهای میکروحباب ها در پزشکی معرفی می شود.
1. Amreddy N., Babu A., Muralidharan R., Panneerselvam J., Srivastava A., Ahmed R., Mehta M., Munshi A. Ramesh R., Recent Advances in Nanoparticle-Based Cancer Drug and Gene Delivery, Elsevier, 2018.
2. Azagheswari B.K., Padma S. Priya S.P., A Review on Microcapsules, Global Journal of Pharmacology, 9, 28-39, 2015.
3. Ye C. Chi H., A Review of Recent Progress in Drug and Protein Encapsulation: Approaches, Applications and Challenges, Materials Science and Engineering: C, 83, 233-246, 2018.
4. Hosseini-zade M.-J., An Overview of the Most Important Mechanisms and Systems of Targeted Drug Delivery, Scientific Journal Management System, 6, 17-28, 2016.
5. Sirsi S. Borden M., Microbubble Compositions, Properties and Biomedical Applications, Bubble Science, Engineering & Technology, 1, 3-17, 2009.
6. Liu H.-L., Fan C.-H., Ting C.-Y. Yeh C.-K., Combining Microbubbles and Ultrasound for Drug Delivery to Brain Tumors: Current Progress and Overview, Theranostics, 4, 432, 2014.
7. Bettinger T. Tranquart F., Design of Microbubbles for Gene/Drug Delivery, Springer, 2016.
8. Xiong X., Zhao F., Shi M., Yang H. Liu Y., Polymeric Microbubbles for Ultrasonic Molecular Imaging and Targeted Therapeutics, Journal of Biomaterials Science, Polymer Edition, 22, 417-428, 2011.
9. Hoff L., Sontum P.C. Hovem J.M., Oscillations of Polymeric Microbubbles: Effect of the Encapsulating Shell, The Journal of the Acoustical Society of America, 107, 2272-2280, 2000.
10. Duarte A.R.C., Ünal B., Mano J.o.F., Reis R.L. Jensen K.F., Microfluidic Production of Perfluorocarbon-Alginate Core–Shell Microparticles for Ultrasound Therapeutic Applications, Langmuir, 30, 12391-12399, 2014.
11. Lin H., Chen J. Chen C., A Novel Technology: Microfluidic Devices for Microbubble Ultrasound Contrast Agent Generation, Medical & biological engineering & computing, 54, 1317-1330, 2016.
12. Tinkov S., Bekeredjian R., Winter G. Coester C., Microbubbles as Ultrasound Triggered Drug Carriers, Journal of pharmaceutical sciences, 98, 1935-1961, 2009.
13. Cao Y., Chen Y., Yu T., Guo Y., Liu F., Yao Y., Li P., Wang D., Wang Z. Chen Y., Drug Release from Phase-Changeable Nanodroplets Triggered by Low-Intensity Focused Ultrasound, Theranostics, 8, 1327, 2018.
14. Seo M. Matsuura N., Direct Incorporation of Lipophilic Nanoparticles into Monodisperse Perfluorocarbon Nanodroplets via Solvent Dissolution from Microfluidic-Generated Precursor Microdroplets, Langmuir, 30, 12465-12473, 2014.
15. Ibsen S., Schutt C.E. Esener S., Microbubble-Mediated Ultrasound Therapy: a Review of Its Potential in Cancer Treatment, Drug design, development and therapy, 7, 375, 2013.
16. Eisenbrey J., Burstein O.M., Kambhampati R., Forsberg F., Liu J.-B. Wheatley M., Development and Optimization of a Doxorubicin Loaded Poly (Lactic Acid) Contrast Agent for Ultrasound Directed Drug Delivery, Journal of Controlled Release, 143, 38-44, 2010.
17. Eisenbrey J., Huang P., Hsu J. Wheatley M., Ultrasound Triggered Cell Death in Vitro with Doxorubicin Loaded Poly Lactic-Acid Contrast Agents, Ultrasonics, 49, 628-633, 2009.
18. Liu J., Shang T., Wang F., Cao Y., Hao L., Ren J., Ran H., Wang Z., Li P. Du Z., Low-Intensity Focused Ultrasound (LIFU)-Induced Acoustic Droplet Vaporization in Phase-Transition Perfluoropentane Nanodroplets Modified by Folate for Ultrasound Molecular Imaging, International journal of nanomedicine, 12, 911, 2017.
19. Li D.S., Yoon S.J., Pelivanov I., Frenz M., O’Donnell M. Pozzo L.D., Polypyrrole-Coated Perfluorocarbon Nanoemulsions as a Sono-Photoacoustic Contrast Agent, Nano letters, 17, 6184-6194, 2017.
20. Rapoport N., Nam K.-H., Gupta R., Gao Z., Mohan P., Payne A., Todd N., Liu X., Kim T. Shea J., Ultrasound-Mediated Tumor Imaging and Nanotherapy Using Drug Loaded, Block Copolymer Stabilized Perfluorocarbon Nanoemulsions, Journal of Controlled Release, 153, 4-15, 2011.
21. Guo Y., Wang X.-Y., Chen Y.-L., Liu F.-Q., Tan M.-X., Ao M., Yu J.-H., Ran H.-t. Wang Z.-X., A Light-Controllable Specific Drug Delivery Nanoplatform for Targeted Bimodal Imaging-Guided Photothermal/Chemo Synergistic Cancer Therapy, Acta biomaterialia, 80, 308-326, 2018.
22. Zhong Q., Yoon B.C., Aryal M., Wang J.B., Ilovitsh T., Baikoghli M., Hosseini-Nassab N., Karthik A., Cheng R. Ferrara K., Polymeric Perfluorocarbon Nanoemulsions Are Ultrasound-Activated Wireless Drug Infusion Catheters, Biomaterials, 206, 73-86, 2019.
23. Sheng W.-S., Xu H.-L., Zheng L., Zhuang Y.-D., Jiao L.-Z., Zhou J.-F., ZhuGe D.-L., Chi T.-T., Zhao Y.-Z. Lan L., Intrarenal Delivery of bFGF-Loaded Liposome under Guiding of Ultrasound-Targeted Microbubble Destruction Prevent Diabetic Nephropathy Through Inhibition of Inflammation, Artificial cells, nanomedicine, and biotechnology, 46, 373-385, 2018.
24. Teraphongphom N., Chhour P., Eisenbrey J.R., Naha P.C., Witschey W.R., Opasanont B., Jablonowski L., Cormode D.P. Wheatley M.A., Nanoparticle Loaded Polymeric Microbubbles as Contrast Agents for Multimodal Imaging, Langmuir, 31, 11858-11867, 2015.
25. Li Y., Zhang X., Luo W., Wang D., Yang L., Wang J., Zhang L., Zhang S., Luo S. Wang Y., Dual-Functionalized Nanoparticles Loaded Microbubbles for Enhancement of Drug Uptake, Ultrasonics, 87, 82-90, 2018.
26. Huebsch N., Kearney C.J., Zhao X., Kim J., Cezar C.A., Suo Z. Mooney D.J., Ultrasound-Triggered Disruption and Self-Healing of Reversibly Cross-Linked Hydrogels for Drug Delivery and Enhanced Chemotherapy, Proceedings of the National Academy of Sciences, 111, 9762-9767, 2014.
27. Xi X.-P., Zong Y.-J., Ji Y.-H., Wang B. Liu H.-S., Experiment Research of Focused Ultrasound Combined with Drug and Microbubble for Treatment of Central Nervous System Leukemia, Oncotarget, 9, 5424, 2018.
28. Meng Y., Pople C.B., Lea-Banks H., Abrahao A., Davidson B., Suppiah S., Vecchio L.M., Samuel N., Mahmud F. Hynynen K., Safety and Efficacy of Focused Ultrasound Induced Blood-Brain Barrier Opening, an Integrative Review of Animal and Human Studies, Journal of Controlled Release, 2019.
29. Unger E., Porter T., Lindner J. Grayburn P., Cardiovascular Drug Delivery with Ultrasound and Microbubbles, Advanced drug delivery reviews, 72, 110-126, 2014.
30. Zhong Y., Zhang Y., Xu J., Zhou J., Liu J., Ye M., Zhang L., Qiao B., Wang Z.-g. Ran H.-t., Low-Intensity Focused Ultrasound-Responsive Phase-Transitional Nanoparticles for Thrombolysis without Vascular Damage: a Synergistic Nonpharmaceutical Strategy, ACS nano, 13, 3387-3403, 2019.