پترولوژی سنگ¬های آتشفشانی الیگوسن گستره ده¬ته، جنوب دیهوک، بلوک لوت
محورهای موضوعی :مرتضی خلعتبری جعفری 1 , نرمین بانه ای 2 , محمد فریدی 3
1 - پژوهشکده علوم زمین، سازمان زمین¬شناسی و اکتشافات معدنی کشور،
2 - سازمان زمین¬شناسی کشور، مدیریت سنندج
3 - سازمان زمین¬شناسی و اکتشافات معدنی کشور، مدیریت مرکز تبریز
کلید واژه: آندزیت, آمیختگی ماگمایی, پسا برخوردی, کالک¬آلکالن ,
چکیده مقاله :
محدوده مورد مطالعه، در جنوب ده ته، بلوک لوت، دربردارنده گدازه های آتشفشانی الیگوسن با ترکیب آندزیت، تراکی آندزیت، تراکی داسیت، داسیت و ریولیت است. این گدازه ها، دارای بافت پورفیریک و پورفیریتیک بوده و فنوکریست آمفیبول فراوان دارند. بیشتر گدازه های الیگوسن، روندهای ماگمایی کالک آلکالن تا کالک آلکالن پتاسیم بالا را نشان می دهند. در نمودارهای دوتایی، نمونه های گدازه های آندزیتی و تراکی آندزیتی در قلمرویی جدای از گدازه های تراکی داسیتی، داسیتی و ریولیتی اجتماع یافته اند که نشان می دهد تفریق ماگمایی، بهتنهایی در ژنز این گدازه ها تاثیر نداشته است. در الگوهای عناصر نادر خاکی و نمودارهای عنکبوتی، این گدازه ها غنی شدگی عناصر کمیاب دارای یون بزرگ و تهی شدگی از عناصر کمیاب با شدت میدان بالا را نشان می دهند. الگوهای به هنجار شده از گدازه های آندزیتی و تراکی آندزیتی، انطباق قابل توجهی با قلمروی بازالت جزیره اقیانوسی دارند. الگوهای گدازه های اسیدی، قابل مقایسه با الگوهای پوسته قاره ای بالایی هستند. این ویژگی-های ژئوشیمیایی، دلالت بر این دارند، که گدازه های آندزیتی و تراکی آندزیتی، از ذوب بخشی گوشته لیتوسفری منشاء گرفته اند، که پیش از این توسط مولفه های فرورانش (مذاب و سیالات) غنی شده اند. در ژنز گدازه های اسیدی نیز ذوب بخشی پوسته قاره ای، نقش مهمی داشته است. بر اساس موقعیت زمین شناسی و داده های ژئوشیمیایی، به نظر می رسد که گدازه های آتشفشانی الیگوسن ده ته، در یک پهنه پسابرخورد، در پسامد نازک شدگی لیتوسفر قاره ای، در بلوک لوت تشکیل شده اند. این فرایندها، شاید پیامد قطعه شدگی لیتوسفر بوده است، که در یک کمربند کوهزایی پسابرخورد روی داده است.
The study area in the south of Deh Tah, Lut Block comprise Oligocene volcanic rocks which are composed of andesite, trachyandesite, dacite and rhyolite. These lavas have porphyric to porphyritic textures with abundant amphibole phenocrysts. Most of the Oligocene lavas display calck alkaline to high-K calck alkaline magmatic affinities. In the binary diagrams, the andesitic to trachyandesitic samples cluster far away from the trachydacitic, dacitic and rhyolitic samples suggesting that they were not afftected only by magmatic differentiation. The REE patterns and spider diagrams show enrichement in light ion litophile element (LILE) and hight field strength element (HFSE) depletion. The normalized patterns of the andesite to trachyandsite have a reliable overlap with oceanic island basalt (OIB). The patterns of the acidic lavas are correlated with the patterns of continental crust. These geochemical evidence indicate that the andesitic to trachyandesitic lavas are generated from partial melting of lithospheric mantle which previously metasomatized by subduction components (melt-fluids). Partial melting of the continental crust has an important role in generation of the acidic lavas. Based on geological setting and geochemical data, it seems that the Oligocene volcanic rocks formed in a post-collision zone, due to thinning of the continental lithosphere in Lut Block. This process is probably related to lithospheric delamination which occurs in a post-collisional zone in Lut Block, as a part of the Alpine-Hymalaya orogenic belt.
خلعت¬بری جعفری، م.، کیلانی جعفری ثانی، ز. و عمرانی، ج.، 1398. پترولوژی و ژئوشیمی سنگ¬های آتشفشاني ائوسن در باختر سه¬چنگي، بلوک لوت، مجله علوم زمین خوارزمی، 2، 54-19.
- کیلانی جعفری ثانی، ز.، 1396. پترولوژی سنگ¬های آتشفشانی ائوسن در باختر سه چنگی، پژوهشکده علوم زمین، 131.
- فریدی، م.، 1384. شرح نقشه زمین¬شناسی زنوغان با مقیاس1:100,000، سازمان زمين¬شناسي و اکتشافات معدنی كشور، نقشه شماره 7555.
Abdel-Rahman, A.M., 2002. Mesozoic volcanism in the Middle East: geochemical, isotopic and petrogenetic evolution of extention-related alkali basalts Lebanon. Geological Magazine, 139, 621-640.
Aldanmaz, E., Pearce, J.A., Thirlwall, M.F. and Mitchell, J.G., 2000. "Petrogenetic evolution of late Cenozoic, post-collision volcanism in western Anatolia, Turkey". Journal of Volcanology and Geothermal Research, 102, 67-95.
Andrew, G., Conly, J. M., Brenen, H. B. and Steven, D. S., 2005. Arc to rift transitional volcanism in the Santa Rosalia region, Baja California Sur Mexico. Journal of Volcanology and Geothermal Research, 142, 303-341.
Arslan, M., Temizel, I., Boztug, D., Abdiogiu, E., Kolayli, H. and Yucel, C., 2009. Petrochemistry, 40Ar-39Ar geochronology and Sr–Pb isotopic geochemistry of the Tertiary volcanic rocks in eastern Pontide southern zone, NE Turkey: geodynamic evolution related to slab break-off and transional tectonics. 2: International symposium on the Geology of the Black Sea region, Abstract Book, 24.
Ashrafi, N., Jahangiri, J., Hasebe, N. and Eby, G.N., 2018. Petrology, geochemistry and geodynamic setting of Eocene-Oligocene alkaline intrusions from the Alborz-Azerbaijan magmatic belt, NW Iran. Chemie der Erde, https://doi.org/10.1016/j.chemer.2018.10.004.
Askren, D.R., Roden, M.F. and Whitney, J.A., 1997. Petrologenesis of Tertiary andesite lava flows interlayered with large-volume felsic ash-flow tuff of Western USA. Journal of Petrology, 38, 1021-1046.
Ayabe, M., Takahashi, K., Shuto, K., Ishimoto, H. and Kawabata, H., 2012. Petrology and geochemistry of adakitic dacites and high-MgO andesites and related calk-alkaline dacites from the Miocene Okoppe volcanic field, N Hllaido, Japan. Journal of Petrology, 53, 547-588.
Aydincakir, E., 2014. The petrogenesis of Early Eocene non-adakitic volcanism in NE Turkey: Constraints on the geodynamic implications. http://dx.doi.org/10.1016/j.lithos.2014.08.019
Beccaluva, L., Di Girolamo P. and Serri G., 1991.Petrogenesis and tectonic setting of the Roman volcanic province, Italy. Lithos, 26, 191-221.
Beccaluva, L., Bianchini, G., Mameli, P. and Natali. C., 2013. Miocene shoshonite volcanism in Sardinia: Implications for magma sources and geodynamic evolution of the central-western Mediterranean. Lithos, http://dx.doi.org/10.1016/j.lithos.2013.08.006
Camp, V.E. and Griffis R.J., 1982. Character, genesis and tectonic setting of igneous rocks in the Sistan suture zone, Eastern Iran. Lithos, 15, 221-239.
Castro, A., Aghazadeh, M. and Chachorro, M., 2013. Late Eocene-Oligocene post colisional monzonitic intrusions from the alborz magmatic belt, NW Iran, An example of monzonite magma generation from the metasomatized mantle source. Lithos, 1-19, doi:org/1016j.lithos.2013.08.003.
Çoban H., Karacık Z. and Ece Ö.I., 2012. Source contamination and tectonomagmatic signals of overlapping Early to Middle Miocene orogenic magmas associated with shallow continental subduction and asthenospheric mantle flows in Western Anatolia: A record from Simav (Kütahya) region", Lithos,140-141,119-141.
Dilek, Y., Imamverdiyev, N. and Altunkaynak, S., 2010. Geochemistry and tectonics of Cenozoic volcanism in the Lesser Caucasus (Azerbaijan) and the peri-Arabian region: collision-induced mantle dynamics and its magmatic fingerprint. International Geology Review, 52(4–6), 536–578.
Dogan, A.U., Dogan M., Peate D.W. and Dogruel Z., 2011. Textural and mineralogical diversity of compositionally homogeneous dacites from the summit of Mt. Erciyes, central Anatolia, Turkey. Lithos, 127, 387-400.
Donaldson, C.H. and Handerson, C.M.B., 1988. A new interpretation of round embayments in quartz crystal. Mineralogical Magazine., 52, 27-33.
Ersoy, Y., Helvacı C., Sözbilir H., Erkül F. and Bozkurt E., 2008. A geochemical approach to Neogene–Quaternary volcanic activity of western Anatolia: An example of episodic bimodal volcanism within the Selendi Basin, Turkey. Chemical Geology, 255, 265-282.
Erturk, M.A., Beyarslan, M., Chung, S.L. and Lin, T.H., 2017. Eocene magmatism (Maden Complex) in the Southeast Anatolian orogenic belt: Magma genesis and tectonic implications. Geoscience Frontiers doi: 10.1016/j.gsf.2017.09.008.
Gao, J.F., Zhou, M.F., Robinson, P.T., Wang, C.Y., Zhao, J.H. and Malpas, J., 2014. Magma mixin recorded by Sr isotopes of plagioclase from dacites of the Quaternary Tengchong volcanic field, SE Tibetan Plateau. Journal of Asian Earth Sciences, 98, 1-17.
Ghadami, G., Shahre Babaki, A. M. and Mortazavi, M., 2008. Post-collisional Plio-Pleistocene adakitic volcanism in centeral Iranian volcanic belt: geochemical and geodynamic implications. Journal of Sciences, Islamic Republic of Iran, 19, 223-235.
Ghorbani, M. R., 2006. Lead enrichment in Neotethyan volcanic rocks from Iran: the implications of a descending slab. Geochemical Journal, 40, 557–68.
Gill, R., 2010. Igneous Rocks and Processes, a practical guide,. A John Wiley and Sons Publication, 428.
Gribble, R.F., Stern, R.J. and Newman, S., 1998. Chemical and isotopic composition of lavas from the northern Mariana Trough: implications for magma genesis in back arc basins. Journal of Petrology, 39, 125-154.
Hofmann, A.W., 1988. Chemical differentiation of the Earth: the relationship between mantle, continental crust, and oceanic crust. Earth and Planetary Science Letters, 90, 297-314.
Irvine, T.N. and Baragar, W.R.A., 1971. A guide to chemical classification of the common volcanic rocks, Canadian Journal of Earth Sciences, 8, 523-548.
Jahangiri, A., 2007. Post-collisional Miocene adakitic volcanism in NW Iran: geochemical and geodynamic implications. Journal of Asian Earth Sciences, 30, 433-447.
Jahn, B.M. and Zhang, Z.Q., 1984. Archean granulite genesis from eastern Hebel Province, China: rare earth geochemistry and tectonic implications. Contributions to Mineralogy and Petrology, 85, 224-243.
Karimpour, M.H., Stern, C.R., Farmer, L., Saadat, S. and Malekezadeh, A., 2011. Review of age, Rb-Sr geochemistry and petrogenesis of Jurassic to Quaternary igneous rocks in Lut Block, eastern Iran. Journal of Geology, 1, 19-36.
Kepezhinskas, P., McDermott, F., Defant, M., Hochstaedter, A., Drummond, M.S., Hawdesworth, C.J., Koloskiv, A., Maury, R.C. and Bellon, H., 1997. Trace element and Sr-Nb-Pb isotopic constraints on a three-component model of Kamchatka Arc petrogenesis. Geochim Cosmochim Acta, 16, 577-600.
Keskin, M., Genç S.C. and Tüysüz O., 2008. Petrology and geochemistry of post-collisional Middle Eocene volcanic units in North-Central Turkey: Evidence for magma generation by slab breakoff following the closure of the Northern Neotethys Ocean, Lithos, 104, 267-305.
Khanna, T.C., Sai, V.V.S., Bizimis, M. and Krishna, A.K., 2015. Petrogenesis of basalt-high-Mg andesite-adakite in the Neoarchean Veligallu greenstone terrane: geochemical evidence for a rifted back-arc crust in the eastern Dharwar craton, India. Precambrian Research, 258, 260-277.
Kluyver, H.M., Tirrul, R., Chance, P.N., and Meixner, H.M., 1981. Explanatory text of the Naybandan Quadrangle map 1:250,000, 143.
Le Bas, M.J., Le Maitre, R.W. and Woolley, A.R., 1992. The contraction of the Total Alkali-Silica chemical classification of volcanic rocks. Mineralogy and Petrology, 46, 1-22.
Liu, H. Q., Xu Y. G., Tian W., Zhong Y. T, Mundil R., Li X. H., Yang Y. H., Luo Z. Y. and Shang-Guan S. M., 2014. Origin of two types of rhyolites in the Tarim large igneous province: Consequences of incubation and melting of a mantle plume. Lithos, 319, 1-14, doi: 10.1016/j.lithos.2014.02.007.
Martin, H., 1999. Adakitic magmas: modern analogues of Archean granitoid. Lithos, 46, 411-429.
Massaferro, G., Haller, M.J., Dostal, J., Pecskay, Z., Prez, H., Meister, C. and Alric, V., 2014. Possible sources for monogenetic Pliocenee Quaternary basaltic volcanism in northern patagonia. Journal of South American Earth Sciences, 55, 29-42.
Mbowou, G.I.B., Botelho, N.F., Lagmet, C.A. and Ngounouno, I., 2015. Petrology of peraluminous and peralkaline rhyolites from 1 the SE Lake Chad (northernmost Cameroon Line). Journal of African Earth Sciences, DOI: 10.1016/j.jafrearsci.09.015.
Nelson, S.T. and Montana, A., 1992. Sieve-textured plagioclase in volcanic rocks produced by rapid decompression. American Mineral, 77, 1242-1249.
Pang, k. N., Chung, S.L., Zarrinkoub, M.H., Mohammadi, S.S., Yang, H.M., Chu, C.H., Lee, H.Y. and Lo, C.H., 2012. Age, geochemical characteristic and petrogenesis of late Cenozoic intraplate alkali basalt in the lut-Sistan region, Eastern Iran. Geology, dio: 1016/j.chemgeo.2012.02.020.
Pang, k. N., Chung, S.L., Zarrinkoub, M.H., Khatib, M.M., Mohammadi, S.S., Chiu, H.Y., Chu, C.H., Lee, H.Y. and Lo, C.H., 2013. Eocene-Oligocene post collisional magmatism in the lut-sistan region, Eastern Iran: magma genesis and tectonic implication. lithos. http://dx.dio.org/10.1016/j.lithos.2013.05.009.
Pfänder, J. A., Jochum, K. P., Kozakov, I., Kröner, A. and Todt, W., 2002. Coupled evolution of back-arc and island arc-like mafic crust in the Late-Neoproterozoic Agardagh Tes-Chem ophiolite, central Asia: evidence from trace element and Sr–Nd–Pb isotope data. Contribution to Mineralogy and Petrology, 143, 154-17.
Plechov, P.Y., Tsai, A.E., Shcherbakov, V.D. and Dirksen, O.V., 2008. Opacitization conditions of hornblende in Bezymyannyi volcano andesites (March 30, 1956 eruption). Petrology, 16, 19-35.
Qian, X., Feng, Q., Yang, W., Wang, Y., Chonglakmani, C. and Monjai, D., 2015. Arc-like volcanic rocks in NW Laos: Geochronological and geochemical constraints and their tectonic implications. Journal of Asian Earth Sciences, 98, 342-357.
Qiang, F., Zhao, Z.F., Qun, L., 2016. Slab-Mantle Interaction in the Petrogenesis of Andesitic Magmas: Geochemical Evidence from Post collisional Intermediate volcanic rocks in the Dabie Orogen, China. Dio: 10.1093/petrology/egw034.
Renjith, M.L., 2014. Micro-textures in plagioclase from 1994e1995 eruption, Barren Island Volcano: Evidence of dynamic magma plumbing system in the Andaman subduction zone. Geoscience Frontiers 5, 113-126.
Rudnick, R.L. and Gao, S., 2003. Composition of the continental crust. In the crust (ed. R. L. Rudnick), 3, Treatise on Geochemistry (eds. H. D. Holland and K. K. Turekian) [M]. Elsevier-pergamon, Oxford, 1-64.
Santosh, M., Satyanarayana, M., Subba Rao, D.V. and Tang, L., 2016. Multiple rifting and alkaline magmatism in southern India during Paleoproterozoic and Neoproterozoic, Tectonophysics, doi: 10.1016/j.tecto.2016.04.041.
Schandlle, E.S. and Gorton, M., 2002. Application of high field strength elements to discrimination tectonic setting in VMS environments. Economic Geology, 97, 629-642.
Shelly, D., 1993. Igneous and Metamorphic rocks under the microscope, Chapman and hall, Landon, 445.
Stöcklin, J., 1968. Structural history and tectonics of Iran: a review American association of Petroleum Geologists, 1229-1258.
Stöcklin, J. and Nabavi, M.H., 1971. Explanatory text of the Boshruyeh quadrangle map, scale 1:250,000. Geological Survey of Iran.
Sumner, J.M. and Wolff, J., 2003. Petrogenesis of mixed-magma, high-grade, peralkaline ignimbrite ‘TL’ (Gran Canaria): diverse styles of mixing in a replenished, zoned magma chamber. Journal of Volcanology and Geothermal Research, 126, 109-126.
Sun, S.S. and McDonough, W.F., 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. Geological Society of London, Special Publication, 42, 313-345.
Tarkian, M., Lotfi, M., and Baumann, A., 1983. Tectonic, magmatism and the formation of mineral deposits in the central Lut, east Iran, Ministry of Mines and Metals, GSI, Geodynamic Project (Geotraverse) in Iran, 51, 357-383.
Temizel, I. and Arslan, M., 2008. Petrology and geochemistry of Tertiary volcanic rocks from the Ikizce (Ordu) area, NE Turkey: Implications for the evolution of the eastern Pontide paleo-magmatic arc. Journal of Asian Earth Sciences, 31, 439-463.
Temizel, I., Arslan, M., Ruffet, G. and Peucat, J.J., 2012. Petrochemistry, geochronology and Sr-Nd isotopic systematics of the Tertiary collisional and post-collisional volcnic rocks from the Ulubey (Ordu) area, eastern pontide, NE Turkey: Implications for extension-related origin and mantle source characteristics, dio: 10.1016/j.lithos.2011.10.006.
Tepley, F.J., Davidson, J.P. and Clynne, M.A.,1999. Magmatic Interactions as recorded in lagioclase phenocrysts of Chaos Crags, Lassen Volcanic Center, California. Journal of Petrology, 40,5, 787- 806.
Thirlwall, M.F., Smith, T.E., Graham, A.M., Theodorou, N., Hollings, P., Davidson, J.P. and Arculus, R.J., 1994. High field strength element anomalies in arc lavas; Source or process? Journal of Petrology 35, 819-838.
Tirrul R., Bell, I.R., Griffis, R,J. and Camp, V.E., 1983. The Sistan suture zone of Eastern Iran. Geological Society of America Bulletin, 944, 134-150.
Topuz, G., Okay, Altherr, R., Schwarz, W.H., Siebe, l.W., Zack, T., Satır, M. and Şen, C., 2011. Post-collisional adakite-like magmatism in the Ağvanis Massif and implications for the evolution of the Eocene magmatism in the Eastern Pontides (NE Turkey). Lithos 125,131–150.
Winter, J.D., 2014. Principles of igneous and metamorphic petrology, Second edition. Pearson education limited, 737.
Wood, D.A., 1980. The application of a Th-Hf-Ta diagram to problems of tectonomagmatic classification and to establishing the nature of crustal contamination of basaltic lavas of the British Tertiary volcanic province. Earth and planetary Sciences Letter, 50, 11-30.
Zarrinkoub, M. H., Pang K. N., Chung, S. L., Khatib, M. M., Mohammadi, S. S., Chiu, H. Y. and Lee, H. Y., 2012. Zircon U-Pb age and geochemical constraints on the origin of the Birjand ophiolite, Sistan suture zone, eastern Iran. Lithos, 154, 392-405.
Zhang, S.H., Zhao, Y., Ye, H., Hou, K.J. and Li, C.F., 2012. Early Mesozoic alkaline complexes in the northern North China Craton: Implications for cratonic lithospheric destruction, http://dx.doi.org/10.1016/j.lithos.2012.08.009.