پیشرفت¬های اخیر درMXenes: فعالیت ضد باکتریایی و تصفیه فاضلاب
محورهای موضوعی : مهندسی شیمی (آلودگیهای محیط زیست)
1 - دانشگاه گلستان
کلید واژه: MXene, نانوصفحات دوبعدی, آنتی¬باکتریال, تصفیه فاضلاب,
چکیده مقاله :
به تازگی ، غشاهای لاملار دو بعدی به دلیل استحکام مکانیکی ، اندازه منافذ قابل تنظیم ، کارایی بالا و پردازش آسان آن ها، توجه جهانی محققان را به خود جلب کرده اند .مواد دوبعدی MXenes که بهعنوان نانوصفحات فلزی عامل دار شده کاربیدی/نیتریدی نیز شناخته میشوند، قابلیت استفاده در کاربردهای مختلفی همچون خازنها و باتریهای یونی برای ذخیرهسازی انرژی، کاتالیزورها، غشاهای تصفیه آب فاضلاب و جداسازی یونهای سنگین فلزی دارند. در دهه اخیر، مطالعات وسیعی در جهت بهبود و کاربردپذیری غشاهای جاذب فلزات سنگین با کمک MXenes و کمپلکسهای آن صورت گرفته است. با توجه به چالشهایی که آلایندههای زیستمحیطی برای طبیعت و جانداران اعمال میکنند، اهمیت یافتن راهکارهای جذب و حذف آلایندهها مورد توجه قرار دارد. در این مقاله ، پس از معرفی MXenes و ساختارهای متنوع آن، مطالعات انجام گرفته اخیر در زمینه تصفیه فاضلاب و تصفیه پسماندهای هستهای با کمک MXenes و ترکیبات آن در کنار خواص آنتی باکتریالی آن مورد بررسی قرار گرفته است.
Recently, two-dimensional (2D) lamellar membranes have attracted worldwide attention of researchers because of mechanical robustness, tunable pore size, high performance, and their easy processing. MXenes 2D materials, also known as carbide/nitride functionalized metal nanoparticles, have applications in a variety of applications such as capacitors and ion batteries for energy storage, catalysts, wastewater treatment membranes and heavy metal ions separation. In the last decade, extensive studies have been conducted to improve the applicability of heavy metal adsorbent membranes with the aid of MXenes and its complexes. Given the challenges that environmental pollutants pose to nature and organisms, it is important to find ways of absorbing and removing pollutants. In this article, after introducing MXenes and its various structures, recent studies on wastewater treatment and nuclear waste treatment with MXenes and its compounds are summarized along with its antibacterial properties
[1] Fu, L., Yan, Z., Zhao, Q., & Yang, H. (2018). Novel 2D nanosheets with potential applications in heavy metal purification: A review. Advanced Materials Interfaces, 5(23), 1801094.
[2] Jun, B. M., Kim, S., Heo, J., Park, C. M., Her, N., Jang, M., ... & Yoon, Y. (2019). Review of MXenes as new nanomaterials for energy storage/delivery and selected environmental applications. Nano Research, 12(3), 471-487.
[3] Ghidiu, M., Naguib, M., Shi, C., Mashtalir, O., Pan, L. M., Zhang, B., ... & Barsoum, M. W. (2014). Synthesis and characterization of two-dimensional Nb 4 C 3 (MXene). Chemical communications, 50(67), 9517-9520.
[4] Ghidiu, M., Naguib, M., & Barsoum, M. W. (2019). Chemical and Electrochemical Intercalation of Ions and Molecules into MXenes. In 2D Metal Carbides and Nitrides (MXenes) (pp. 161-175). Springer, Cham.
[5] Anasori, B., & Gogotsi, Û. G. (2019). 2D metal carbides and nitrides (MXenes) (p. 1). Berlin: Springer.
[6] VahidMohammadi, A., Kayali, E., Orangi, J., & Beidaghi, M. (2019). Techniques for MXene Delamination into Single-Layer Flakes. In 2D Metal Carbides and Nitrides (MXenes) (pp. 177-195). Springer, Cham.
[7] Mayerberger, E. A., Street, R. M., McDaniel, R. M., Barsoum, M. W., & Schauer, C. L. (2018). Antibacterial properties of electrospun Ti 3 C 2 T z (MXene)/chitosan nanofibers. RSC advances, 8(62), 35386-35394.
[8] Verger, L., Xu, C., Natu, V., Cheng, H. M., Ren, W., & Barsoum, M. W. (2019). Overview of the synthesis of MXenes and other ultrathin 2D transition metal carbides and nitrides. Current Opinion in Solid State and Materials Science, 23(3), 149-163.
[9] Rasool, K., Pandey, R. P., Rasheed, P. A., Berdiyorov, G. R., & Mahmoud, K. A. (2019). MXenes for Environmental and Water Treatment Applications. In 2D Metal Carbides and Nitrides (MXenes) (pp. 417-444). Springer, Cham.
[10] Wei, Z., Peigen, Z., Wubian, T., Xia, Q., Yamei, Z., & ZhengMing, S. (2018). Alkali treated Ti3C2Tx MXenes and their dye adsorption performance. Materials Chemistry and Physics, 206, 270-276.
[11] Jun, B. M., Her, N., Park, C. M., & Yoon, Y. (2020). Effective removal of Pb (ii) from synthetic wastewater using Ti 3 C 2 T x MXene. Environmental Science: Water Research & Technology, 6(1), 173-180.
[12] Pandey, R. P., Rasool, K., Abdul Rasheed, P., & Mahmoud, K. A. (2018). Reductive sequestration of toxic bromate from drinking water using lamellar two-dimensional Ti3C2TX (MXene). ACS Sustainable Chemistry & Engineering, 6(6), 7910-7917.
[13] Boota, M., Anasori, B., Voigt, C., Zhao, M. Q., Barsoum, M. W., & Gogotsi, Y. (2016). Pseudocapacitive electrodes produced by oxidant‐free polymerization of pyrrole between the layers of 2D titanium carbide (MXene). Advanced Materials, 28(7), 1517-1522.
[14] Ling, Z., Ren, C. E., Zhao, M. Q., Yang, J., Giammarco, J. M., Qiu, J., ... & Gogotsi, Y. (2014). Flexible and conductive MXene films and nanocomposites with high capacitance. Proceedings of the National Academy of Sciences, 111(47), 16676-16681.
[15] Boota, M. (2019). MXene–Organic Hybrid Materials. In 2D Metal Carbides and Nitrides (MXenes) (pp. 221-251). Springer, Cham.
[16] Huang, X., Wang, R., Jiao, T., Zou, G., Zhan, F., Yin, J., ... & Peng, Q. (2019). Facile preparation of hierarchical AgNP-loaded MXene/Fe3O4/polymer nanocomposites by electrospinning with enhanced catalytic performance for wastewater treatment. ACS omega, 4(1), 1897-1906.
[17] Watanabe, S., Ogi, H., Arai, Y., Aihara, H., Takahatake, Y., Shibata, A., ... & Kubota, T. (2019). STRAD project for systematic treatments of radioactive liquid wastes generated in nuclear facilities. Progress in Nuclear Energy, 117, 103090.
[18] Zhang, Y. J., Zhou, Z. J., Lan, J. H., Ge, C. C., Chai, Z. F., Zhang, P., & Shi, W. Q. (2017). Theoretical insights into the uranyl adsorption behavior on vanadium carbide MXene. Applied Surface Science, 426, 572-578.
[19] Wang, L., Tao, W., Yuan, L., Liu, Z., Huang, Q., Chai, Z., ... & Shi, W. (2017). Rational control of the interlayer space inside two-dimensional titanium carbides for highly efficient uranium removal and imprisonment. Chemical Communications, 53(89), 12084-12087.
[20] Wang, L., Yuan, L., Chen, K., Zhang, Y., Deng, Q., Du, S., ... & Barsoum, M. W. (2016). Loading actinides in multilayered structures for nuclear waste treatment: the first case study of uranium capture with vanadium carbide MXene. ACS Applied Materials & Interfaces, 8(25), 16396-16403.
[21] Rasool, K., Helal, M., Ali, A., Ren, C. E., Gogotsi, Y., & Mahmoud, K. A. (2016). Antibacterial activity of Ti3C2T x MXene. ACS nano, 10(3), 3674-3684.
[22] Arabi Shamsabadi, A., Sharifian Gh, M., Anasori, B., & Soroush, M. (2018). Antimicrobial Mode-of-Action of Colloidal Ti3C2T x MXene Nanosheets. ACS Sustainable Chemistry & Engineering, 6(12), 16586-16596.
[23] Alimohammadi, F., Sharifian Gh, M., Attanayake, N. H., Thenuwara, A. C., Gogotsi, Y., Anasori, B., & Strongin, D. R. (2018). Antimicrobial properties of 2D MnO2 and MoS2 nanomaterials vertically aligned on graphene materials and Ti3C2 MXene. Langmuir, 34(24), 7192-7200.
[24] Huang, K., Li, Z., Lin, J., Han, G., & Huang, P. (2018). Two-dimensional transition metal carbides and nitrides (MXenes) for biomedical applications. Chemical Society Reviews, 47(14), 5109-5124.
[25] Lau, W. J., & Ismail, A. F. (2009). Polymeric nanofiltration membranes for textile dye wastewater treatment: preparation, performance evaluation, transport modelling, and fouling control—a review. Desalination, 245(1-3), 321-348.
[26] Khemakhem, S., Amar, R. B., Hassen, R. B., Larbot, A., Medhioub, M., Salah, A. B., & Cot, L. (2004). New ceramic membranes for tangential waste-water filtration. Desalination, 167, 19-22.
[27] Ivnitsky, H., Katz, I., Minz, D., Shimoni, E., Chen, Y., Tarchitzky, J., ... & Dosoretz, C. G. (2005). Characterization of membrane biofouling in nanofiltration processes of wastewater treatment. Desalination, 185(1), 255-268.
[28] Visvanathan, C., Aim, R. B., & Parameshwaran, K. (2000). Membrane separation bioreactors for wastewater treatment. Critical reviews in environmental science and technology, 30(1), 1-48.
[29] Wu, Y., Ding, L., Lu, Z., Deng, J., & Wei, Y. (2019). Two-dimensional MXene membrane for ethanol dehydration. Journal of Membrane Science, 590, 117300.
[30] Xu, Z., Liu, G., Ye, H., Jin, W., & Cui, Z. (2018). Two-dimensional MXene incorporated chitosan mixed-matrix membranes for efficient solvent dehydration. Journal of membrane science, 563, 625-632.
[31] Han, R., Ma, X., Xie, Y., Teng, D., & Zhang, S. (2017). Preparation of a new 2D MXene/PES composite membrane with excellent hydrophilicity and high flux. Rsc Advances, 7(89), 56204-56210.
[32] Liu, G., Shen, J., Ji, Y., Liu, Q., Liu, G., Yang, J., & Jin, W. (2019). Two-dimensional Ti 2 CT x MXene membranes with integrated and ordered nanochannels for efficient solvent dehydration. Journal of Materials Chemistry A, 7(19), 12095-12104.
[33] Liu, G., Shen, J., Liu, Q., Liu, G., Xiong, J., Yang, J., & Jin, W. (2018). Ultrathin two-dimensional MXene membrane for pervaporation desalination. Journal of membrane science, 548, 548-558.
[34] اخلاقی. (2019). سنتز خودپیشرونده دما بالای کاربید تیتانیم آلومینیم به کمک فعالسازی مکانیکی. مهندسی متالورژی, 22(1), 65-74.
[35] Carotta, M. C., Ferroni, M., Guidi, V., & Martinelli, G. (1999). Preparation and characterization of nanostructured titania thick films. Advanced Materials, 11(11), 943-946.
[36] Mashtalir, O., Cook, K. M., Mochalin, V. N., Crowe, M., Barsoum, M. W., & Gogotsi, Y. (2014). Dye adsorption and decomposition on two-dimensional titanium carbide in aqueous media. Journal of Materials Chemistry A, 2(35), 14334-14338.
[37] Yin, J., Zhan, F., Jiao, T., Deng, H., Zou, G., Bai, Z., ... & Peng, Q. (2020). Highly efficient catalytic performances of nitro compounds via hierarchical PdNPs-loaded MXene/polymer nanocomposites synthesized through electrospinning strategy for wastewater treatment. Chinese Chemical Letters, 31(4), 992-995.
[38] Guo, X., Zhang, X., Zhao, S., Huang, Q., & Xue, J. (2016). High adsorption capacity of heavy metals on two-dimensional MXenes: an ab initio study with molecular dynamics simulation. Physical Chemistry Chemical Physics, 18(1), 228-233.
[39] Yang, L., Zheng, W., Zhang, P., Chen, J., Zhang, W., Tian, W. B., & Sun, Z. M. (2019). Freestanding nitrogen-doped d-Ti3C2/reduced graphene oxide hybrid films for high performance supercapacitors. Electrochimica Acta, 300, 349-356.
[40] Rasool, K., Mahmoud, K. A., Johnson, D. J., Helal, M., Berdiyorov, G. R., & Gogotsi, Y. (2017). Efficient antibacterial membrane based on two-dimensional Ti 3 C 2 T x (MXene) nanosheets. Scientific reports, 7(1), 1-11.
[41] Li, K., Zou, G., Jiao, T., Xing, R., Zhang, L., Zhou, J., ... & Peng, Q. (2018). Self-assembled MXene-based nanocomposites via layer-by-layer strategy for elevated adsorption capacities. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 553, 105-113.
[42] Chen, K., Chen, Y., Deng, Q., Jeong, S. H., Jang, T. S., Du, S., ... & Han, C. M. (2018). Strong and biocompatible poly (lactic acid) membrane enhanced by Ti3C2Tz (MXene) nanosheets for Guided bone regeneration. Materials Letters, 229, 114-117.
[43] Chen, Z., Han, Y., Li, T., Zhang, X., Wang, T., & Zhang, Z. (2018). Preparation and electrochemical performances of doped MXene/poly (3, 4-ethylenedioxythiophene) composites. Materials Letters, 220, 305-308.
[44] Tong, Y., He, M., Zhou, Y., Zhong, X., Fan, L., Huang, T., ... & Wang, Y. (2018). Hybridizing polypyrrole chains with laminated and two-dimensional Ti3C2Tx toward high-performance electromagnetic wave absorption. Applied Surface Science, 434, 283-293.
[45] Yang, H., Dai, J., Liu, X., Lin, Y., Wang, J., Wang, L., & Wang, F. (2017). Layered PVB/Ba3Co2Fe24O41/Ti3C2 Mxene composite: enhanced electromagnetic wave absorption properties with high impedance match in a wide frequency range. Materials Chemistry and Physics, 200, 179-186.
[46] Mu, W., Du, S., Li, X., Yu, Q., Wei, H., Yang, Y., & Peng, S. (2019). Removal of radioactive palladium based on novel 2D titanium carbides. Chemical Engineering Journal, 358, 283-290.
[47] Mu, W., Du, S., Li, X., Yu, Q., Wei, H., Yang, Y., & Peng, S. (2019). Removal of radioactive palladium based on novel 2D titanium carbides. Chemical Engineering Journal, 358, 283-290.
[48] Zhang, B., Fu, L., Wang, S., & Zhang, L. (2018). Adsorption of palladium (II) from aqueous solution using nanosilica modified with imidazoline groups. Materials Chemistry and Physics, 214, 533-539.
[49] Jun, B. M., Heo, J., Taheri-Qazvini, N., Park, C. M., & Yoon, Y. (2020). Adsorption of selected dyes on Ti3C2Tx MXene and Al-based metal-organic framework. Ceramics International, 46(3), 2960-2968.
[50] Shahzad, A., Rasool, K., Miran, W., Nawaz, M., Jang, J., Mahmoud, K. A., & Lee, D. S. (2017). Two-dimensional Ti3C2T x MXene nanosheets for efficient copper removal from water. ACS Sustainable Chemistry & Engineering, 5(12), 11481-11488.