اندازهگیری بلورینگی پلیمرها توسط گرماسنج روبشی تفاضلی (2)
محورهای موضوعی : روش های پیشرفته شناسایی پلیمرها
1 - دانشگاه صنعتی سهند تبریز، پژوهشکده مواد پلیمری و دانشکده مهندسی پلیمر
کلید واژه: پلیمر, بلورینگی, گرماسنج روبشی تفاضلی, گرمای ذوب, خط پایه,
چکیده مقاله :
گرماسنج روبشی تفاضلی (DSC) بهطور گسترده برای تعیین بلورینگی پلیمرهای نیمهبلورین به کار میرود. در مدل دوفازی از مقایسه آنتالپی یا گرمای ذوب اندازهگیری شده با گرمای ذوب پلیمر کاملاً بلورین، درجه بلورینگی نمونه تعیین میشود. گرمای ذوب نمونه پلیمری با اندازهگیری مساحت بین منحنی گرماگیر ذوب و خط پایه محاسبه میشود. در مسیر واقعی فرایند ذوب، خط پایه صحیح در واقع همان ظرفیت حرارتی پلیمر نیمهبلورین است که هم با افزایش دما و هم با تغییر بلورینگی تغییر میکند و تعیین آن دشوار است. از آنجا که آنتالپی کمیتی تابع حالت و مستقل از مسیر فرایند است، به جای مسیر اصلی فرایند که در آن افزایش دما و ذوب ماده پلیمری همزمان صورت میگیرد، میتوان دو مسیر جایگزین طراحی کرد که محاسبه آنتالپی آنها آسانتر است. در این مسیرهای جایگزین، که در این کار مورد بررسی قرار میگیرند، دو مرحله افزایش دما و ذوب از یکدیگر تفکیک میشوند. لذا فرض میشود که ابتدا در دمای ثابت، ذوب کامل پلیمر نیمهبلورین صورت گرفته و سپس دمای مذاب افزایش مییابد، یا ابتدا افزایش دمای پلیمر نیمهبلورین (بدون ذوب شدن) رخ داده و سپس ذوب آن در دمای ثابت صورت میگیرد. در نهایت تأثیر منطقه بین سطحی بلور-آمورف و وجود نقص در ساختار بلور، که در مدل دوفازی نادیده گرفته میشود، در مقدار آنتالپی ذوب و محاسبه بلورینگی مورد بررسی قرار میگیرد.
Differential scanning calorimetry (DSC) is widely used to determine the crystallinity of semicrystalline polymers. In the two-phase model, the measured heat of fusion is compared to the melting enthalpy of a completely crystalline polymer to get the crystallinity degree. Fusion heat of a polymeric sample is identified by area under the melting endotherm and a baseline. A correct baseline is heat capacity of the semicrystalline sample. It varies with both temperature and crystallinity and is difficult to evaluate. Enthalpy of a process is a state-function quantity and is independent of the process path. In polymer melting, temperature increase and fusion process occur simultaneously. This makes evaluation of the fusion heat challenging. Herein, alternative paths are supposed in which temperature increase and fusion process occur separately and sequentially. This leads to a convenient enthalpy evaluation. Two alternative paths can be defined: first, polymer melts at a constant temperature which is followed by temperature increase of the melt; second, polymer temperature increases without any change in crystallinity degree which is followed by polymer melting at a constant temperature. Lastly, an enthalpy deficiency due to the amorphous-crystalline interface and an excess enthalpy due to the defects present in crystalline regions are investigated how to affect the crystallinity.
1. Gray A.P., Polymer Crystallinity Determinations by DSC, Thermochimica Acta, 1, 563-579, 1970.
2. Beauson J., Schillani G., Van der Schueren L., Goutianos S., The Effect of Processing Conditions and Polymer Crystallinity on the Mechanical Properties of Unidirectional Self-Reinforced PLA Composites, Composites Part A: Applied Science and Manufacturing, 152, 106668, 2022.
3. Ma X.l., Wen L.h., Wang S., Xiao J., Li W., Hou X., Inherent Relationship Between Process Parameters, Crystallization and Mechanical Properties of Continuous Carbon Fiber Reinforced PEEK Composites, Defence Technology, 24, 269-284, 2023.
4. Chen K., Zhang W., Yarin A.L., Pourdeyhimi B., Polymer Melting Temperatures and Crystallinity at Different Pressure Applied, Journal of Applied Polymer Science, 138, 50936, 2021.
5. Demina V.A., Krasheninnikov S.V., Buzin A.I., Kamyshinsky R.A., Sadovskaya N.V., Goncharov E.N., Zhukova N.A., Khvostov M.V., Pavlova A.V., Tolstikova T.G., Sedush N.G., Chvalun S.N., Biodegradable Poly(l-lactide)/Calcium Phosphate Composites with Improved Properties for Orthopedics: Effect of Filler and Polymer Crystallinity, Materials Science and Engineering: C, 112, 110813, 2020.
6. Doumeng M., Makhlouf L., Berthet F., Marsan O., Delbé K., Denape J., Chabert F., A Comparative Study of the Crystallinity of Polyetheretherketone by Using Density, DSC, XRD, and Raman Spectroscopy Techniques, Polymer Testing, 93, 106878, 2021.
7. Ricciardi R., Auriemma F., Gaillet C., De Rosa C., Lauprêtre F., Investigation of the Crystallinity of Freeze/Thaw Poly(vinyl alcohol) Hydrogels by Different Techniques, Macromolecules, 37, 9510-9516, 2004.
8. Kong Y., Hay J.N., The Enthalpy of Fusion and Degree of Crystallinity of Polymers as Measured by DSC, European Polymer Journal, 39, 1721-1727, 2003.
9. مینا علیزاده اقدم، اندازهگیری بلورینگی پلیمرها توسط گرماسنج روبشی تفاضلی (1)، پژوهش و توسعه فناوری پلیمر ایران، 6، 5-14، 1400.
10. Séguéla R., Temperature Dependence of the Melting
Enthalpy of Poly (ethylene terephthalate) and Poly(aryl-ether-ether-ketone), Polymer, 34, 1761-1764, 1993.
11. Kong Y., Hay J.N., The Measurement of the Crystallinity of Polymers by DSC, Polymer, 43, 3873-3878, 2002.
12. Smith J.M., Van Ness H.C., Abbott M.M., Swihart M.T., Introduction to Chemical Engineering Thermodynamics, McGraw-Hill Education, Amazon, 2018.
13. Dechant J., Polymer Handbook. 3rd Edition. I New York/Chichester/Brisbane/Toronto/Singapore: John Wiley & Sons 1989, 361-362, 1990.
14. Dole M., Crystallinity from Thermal Measurements, Journal of Polymer Science Part C: Polymer Symposia, 18, 57-68, 1967.
15. Mandelkern L., Allou A.L., Gopalan M.R., Enthalpy of Fusion of Linear Polyethylene, The Journal of Physical Chemistry, 72, 309-318, 1968.
16. Alizadehaghdam M., Heck B., Siegenführ S., Abbasi F., Reiter G., Thermodynamic Features of Perfectly Crystalline Poly(3-hexylthiophene) Revealed through Studies of Imperfect Crystals, Macromolecules, 52, 2487-2494, 2019.
17. Snyder C.R., Nieuwendaal R.C., DeLongchamp D.M., Luscombe C.K., Sista P., Boyd S.D., Quantifying Crystallinity in High Molar Mass Poly(3-hexylthiophene), Macromolecules, 47, 3942-3950, 2014.
18. Kavesh S., Schultz J.M., Meaning and Measurement of Crystallinity in Polymers: A Review, Polymer Engineering & Science, 9, 452-460, 1969.
19. Nieuwendaal R.C., Snyder C.R., DeLongchamp D.M., Measuring Order in Regioregular Poly(3-hexylthiophene) with Solid-State 13C CPMAS NMR, ACS Macro Letters, 3, 130-135, 2014.
20. Shen X., Hu W., Russell T.P., Measuring the Degree of Crystallinity in Semicrystalline Regioregular Poly(3-hexylthiophene), Macromolecules, 49, 4501-4509, 2016.
21. Balko J., Lohwasser R.H., Sommer M., Thelakkat M., Thurn-Albrecht T., Determination of the Crystallinity of Semicrystalline Poly(3-hexylthiophene) by Means of Wide-Angle X-ray Scattering, Macromolecules, 46, 9642-9651, 2013.
22. Hagemann H., Snyder R.G., Peacock A.J., Mandelkern L., Quantitative Infrared Methods for the Measurement of Crystallinity and its Temperature Dependence: Polyethylene, Macromolecules, 22, 3600-3606, 1989.
23. Lanyi F.J., Wenzke N., Kaschta J., Schubert D.W., A Method to Reveal Bulk and Surface Crystallinity of Polypropylene by FTIR Spectroscopy-Suitable for Fibers and Nonwovens, Polymer Testing, 71, 49-55, 2018.
24. Mallapragada S.K., Narasimhan B., Infrared Spectroscopy in the Analysis of Polymer Crystallinity, In Encyclopedia of Analytical Chemistry, 1-16, 2022.
25. Canetti M., Bertini F., Scavia G., Porzio W., Structural
Investigation on Bulk Poly(3-hexylthiophene): Combined SAXS, WAXD, and AFM Studies, European Polymer Journal, 45, 2572-2579, 2009.