ثبت جهانی رویداد بیهوازی اقیانوسی در کربناتهای سازند داریان در شمال زاگرس مرتفع، کوه زرگران (گدوان)
محورهای موضوعی :مظاهر یاوری 1 , مهدی یزدی 2 , هرمز قلاوند 3 , محمدحسین آدابی 4
1 - کارشناس ارشد تفسیر لرزه ای
2 - استاد دانشگاه اصفهان
3 - .
4 - دانشگاه شهیدبهشتی
کلید واژه: ایزوتوپ کربن# رویداد بیهوازی اقیانوسی# زرگران (گدوان)# کرتاسه #,
چکیده مقاله :
ثبت رویداد بیهوازی اقیانوسی a1 و زمان ثبت این رویداد در کربناتهای کمژرفای سازند داریان در برش کوه زرگران (گدوان) در شرق شیراز، بر اساس ایزوتوپهای کربن و اکسیژن، ریزرخسارهها و دادههای فسیلی مورد مطالعه قرار گرفت. در این برش ستبرای سازند داریان 287 متر اندازهگیری و 191 نمونه برداشت شده است. توالی رسوبی سازند داریان بر اساس دادههای صحرایی در قاعده با آهک های خاکستری ضخیملایه تا تودهای همراه با اربیتولیناها و رودیستها آغاز میشود و در بخشهای بالاتر شامل آهک های خاکستری متوسط تا ضخیم لایه است و فراوانی فرامینیفرهاي بنتیک از جمله اربیتولینا ها افزایش مییابد. در برش ذکر شده بر پایه مطالعه حجره جنینی اربیتولیناها، سن بخش زیرین این سازند بارمین پسین-آپسین پیشین تعیین شده و آغاز تشکیل نهشتههای بیهوازی اقیانوسی است. منحنیهای ایزوتوپ کربن بین منحنیهای C3 تا C6 در کربناتهای قاعده سازند داریان آشفتگیهایی را نشان میدهد. این تغییرات و همچنین ظهور رخساره Lithocodium-Bacinella در این بخش از سازند وجود رویداد بیهوازی اقیانوسی را تایید میکند. رویداد بیهوازی اقیانوسی بیانگر گرمشدگی محیط و شرایط گلخانهای است. در این برش که با تجمع فراوان رودیستها همراه شده می تواند تاییدی بر شرایط آب و هوایی این رویداد باشد.
The recording of oceanic anoxic event al record and the time of this event in the shallow carbonates of the Dariyan Formation in Zargran mountain (Gadvan) section in the east of Shiraz, was studied based on carbon and oxygen isotopes, microfacies and fossil data. In this section, thickness of the Dariyan Formation is 287 m and 191 samples were taken. Based on field data, the sedimentary sequence of this formation, , begins at the base with thick-layered to massive gray limestones containing orbitolinas and rudists, and in the upper parts it includes medium to thick-layered gray limestones including abundant benthic foraminifera, such as orbitolinas. In the mentioned section, based on the study of the embryonic cells of orbitolinas, a late Barmian-early Aptian age was determined for the lower part of this unit, which is the beginning of the formation of anoxic oceanic deposits. The carbon isotope curves between the C3 and C6 curves in the carbonates at the base of the Daryian Formation show disturbances. These changes and the appearance of the Lithocodium-Bacinella facies in this part of the formation confirm the existence of an oceanic anoxic event. The oceanic anoxic event indicates warming of the environment and greenhouse conditions, which was accompanied by abundant rudists in this section and can be a confirmation for the weather conditions of this event.
آدابي، م، ح.، 1390، ژئوشيمي رسوبي، انتشارات آرين زمين، چاپ دوم،451.
عظام پناه، ی.، 1390، بایو استراتیگرافی و لیتواستراتیگرافی سازند گرو در برش سطحی کوزران (شمال غرب کرمانشاه) و چاه نفت-1 (جنوب کرمانشاه)، پایاننامه کارشناسی ارشد، دانشگاه شهید بهشتی ، 164.
موسوي زاده، م. ع.، 1392، تاريخچه رسوبگذاری و پس از رسوبگذاری سازند داريان (كرتاسه پاييني) در زون ساختاري زاگرس (فارس داخلي)، پایاننامه دكتري، دانشگاه مشهد، 251.
مدیریت اکتشاف شرکت ملی نفت ایران، 1397. نقشه رینگهای ساختمانهای زمینشناسی زاگرس.
Adabi, M.H., Kakemem, U. and Sadeghi, A., 2015. Sedimentary facies and sequence stratigraphy of Oligocene-Miocene shallow water carbonate from the Rig Mountain, Zagros basin (Sw Iran): Carbonate and Evaporites, v. 31, 69-85.
Amodio, S. and Weissert, H., 2017. Palaeoenvironment and palaeoecology before and at the onset of Oceanic Anoxic Event (OAE) 1a: Reconstructions from Central Tethyan archives. Palaeogeography Palaeoclimatology Palaeoecology, 479, 71-89.
Bachmann, M. and Hirsch F., 2006. Lower Cretaceous platform of the eastern Levant (Galilee and Golan heights), stratigraphy and second order sea level change: Cretaceous Research, 27, 487-512.
Bralower, T. J., Arthur, M. A., Leckie, R.M., Sliter, W. V., Allard, D. and Schlanger, S. O., 1994. Timing and paleoceanography of oceanic dysoxia/anoxia in the late Barremian to early Aptian Palaios, 9, 335–369.
Coccioni, R., Nesci, O., Tramontana, M., Wezel, F.C. and Moretti, E., 1987. Descrizione di un livello guida “Radiolaritic-bituminoso-ittiolitico” alla base delle Marne a Fucoidi nell`Appennino Umbro- Marchigiano.dupr Bolletin Societa Geologia Italia, 106, 183–192
Erba, E., 2004, Calcareous nannofossils and Mesozoic anoxic events. Marine Micropalaeontology, 52, 85–106.
Ezampanah, Y., Sadeghi, A., Jamali, A.M. and Adabi, M.H., 2013. Biostratigraphy of the Garau Formation (Berriasian?-lower Cenomanian) in central part of Lurestan zone, northwest of Zagros Iran. Cretaceous Resaerch, 46, 101-113.
Flugel, E., 2010. Microfacies analysis of carbonate rocks, analysis, interpretation and application: Springer Verlag, Berlin, 984.
Godet, A., Durlet, C., Spangenberg, E., Follmi b, B., 2016. Estimating the impact of early diagenesis on isotope records in shallow-marine carbonates: A case study from the Urgonian Platform in western Swiss Jura. Palaeogeogr. Palaeoclimatol. Palaeoecol., 454, 125-138.
Heldt, M., Bachman, M., Lehmann J., 2008. Microfacies, biostratigraphy and geochemistry of the hemipelagic Barremian-Aptian in north-central Tunisia, influence of the OAE 1a on the southern Tethyan margin. Paleogeography, Paleoclimatology, Paleoecology, 261, 246-260.
Immenhauser, A., Hillgärtner, H. and Van Bentum, E., 2005. Microbial-foraminiferal episodes in the Early Aptian of the southern Tethyan margin: ecological significance and possible relation to Oceanic Anoxic Event 1a. Sedimentology, 52, 77–99.
Jamalian, M. and Adabi, M.H., 2014. Geochemistry, microfacies and diagenetic evidences for original aragonite mineralogy and open diagenetic system of lower Cretaceous carbonates Fahliyan Formation (Kuh-e Siah area, Zagros Basin, South Iran): Carbonate and Evaporites, 30, 77-98.
James G. A. and Wynd, J. G., 1965. Stratigraphy nomenclature of Iranian oil consortium agreement area. American Association of Petroleum Geologists Bulletin, 49, 2182-2245.
Jenkeyns, H. C., 1980. Cretaceous anoxic events from continents to oceans: Journal of Geological Society of London, 137, 171– 188.
Jenkeyns, H., 2018. Transient cooling episodes during Cretaceous Oceanic Anoxic Events with special reference to OAE 1a (Early Aptian). Philosophical Transactions of the Royal Society A. Mathematical, Physical and Engineering Sciences. 376. Iss.2130.
Jenkeyns, H.C., 1999. Mesozoic anoxic events and palaeoclimate: Zeology Geology and Palaeontology, 27, 943–949.
Jones, C. E. and Jenkeyns, H. C., 2001. Seawater strontium isotopes, oceanic anoxic events, and seafloor hydrothermal activity in the Jurassic and Cretaceous: American Journal of Science, 301, 112–149.
Kent, Slinger and Thomas, 1951. Stratigraphical explotation surveys in Southwest Persia: Third World Petroleum congress, 1, 141-161.
Leckie, R. M., Browler, T., J. and Cashman, R., 2002. Oceanic anoxic events and planktonic evolution, Biotic response to tectonic forcing during the Mid-Cretaceous: paleoceanography, 17, 13-29.
Menegatti, AP., Weissert, H., Brown, R.S., Tyson, R.V., Farrimmnd, P., Strasser, A. and Caron, M., 1998. High resolution δ13C stratigraphy through the early Aptian "Livello Selli" of the Aptian Tethys. Palaeoceangraphy, 13, 530-545.
Moosavizadeh, M. A., Mahboobi, A., Mousavi-Harami, R. and Kavoosi, M.A. 2014. Early Aptian anoxic event (OAE) 1a in northeastern Arabian plate setting, an example from Dariyan Formation in Zagros fold-thrust belt, SE Iran: Arabian Journal of Geosciences, 7, 4745-4756.
Naderi-Khujin, M., Seyrafian, A., Vaziri-Moghaddam, H. and Tavakoli, V., 2016, A record of global change: OAE 1a in Dariyan shallow‑water platform carbonates, southern Tethys, Persian Gulf, Iran: facies, 62, DOI 10.1007/s10347-016-0476-6.
Najarro, M., Rosales, I. and Martín-Chivelet, J., 2011. Major palaeoenvironmental perturbation in an early Aptian carbonate platform, prelude of the Oceanic Anoxic Event 1a?. Sedimentary Geology. 235, 50–71.
Sanders, D. and Pons, J.M., 1999. Rudist formations in mixed siliciclastic-carbonate depositional environments, Upper Cretaceous, Austria: stratigraphy, sedimentology, and models of development. Palaeogeography Palaeoclimatology Palaeoecology 148 (4), 249–284.
Schlanger, S. O. and Jenkenys, H. C., 1976. Cretaceous oceanic anoxic events, causes and consequences: geologie en mijnbouw, 55, 179-184.
Schroeder, R., Van Buchem, F.S.P., Cherchi, A., Baghbani, D., Vincent, B., Immenhauser, A. and Granier, B., 2010. Revised Orbitolinid biostratigraphic zonation for the Barremian – Aptian of the eastern Arabian Plate and implications for regional stratigraphic correlations. In F.S.P. Van Buchem, M.I. Al-Husseini, F. Maurer and H.J. Droste (Eds.), Barremian − Aptian stratigraphy and hydrocarbon habitat of the eastern Arabian Plate: GeoArabia special publication 4, Gulf PetroLink, Bahrain, 1, 49-96.
Sinclair, H.D., Sayer, Z.R. and Tucker, M.E. 1998. Carbonate sedimentation during early foreland basin subsidence: The Eocene succession of the French ALPS. In: Wright V.P. & Burchette T.P. (eds), Carbonate ramps: Special Publications, Geological Society of London,149, 205-227.
van Breugel, Y., Schouten, S., Tsikos, H., Erba, E., Price, G.D. and Sinninghe Damsté, S., 2007. Synchronous negative carbon isotope shifts in marine and terrestrial biomarkers at the onset of the early Aptian oceanic anoxic event 1a: Evidence for the release of 13C-depleted carbon into the atmosphere: Palaeoceanography 22, p. 10.1029/2006PA001341.
Velic, I., 2007. Stratigraphy and palaeobiogeography of Mesozoic benthic foraminifera of the Karst Dinarides (SE Europe): Geologia Croatica 60/1. 1–113.
Weissert, H. and Erba, E., 2004. Volcanism, CO2 and palaeoclimate: a late Jurassic–Early Cretaceous carbon and oxygen isotope record. Journal of Geological Society, London, 161, 1–8.
Yavari, M., Yazdi, M., Gahalavand, H. and Adabi, M.H., 2015. Planktonic foraminifera of the Dariyan Formation and implications of Oceanic Anoxic Event 1a. Geopersia. 5(2), 125-137.