مدلی برای تعیین نقش هوش تجاری در ارائه سرویس مؤثر به مشتریان شرکتهای فناوری اطلاعات
محورهای موضوعی : انتقال فناوري و تجاريسازي پژوهش
1 - دانشگاه علامه طباطبائی
2 - دانشگاه آزاد اسلامی واحد قزوین
کلید واژه: هوش تجاری, استراتژی مدیریت دانش, استراتژی مشتری مداری, استراتژی کسب و کار, ارائه خدمات مؤثر به مشتریان,
چکیده مقاله :
استفاده از هوش تجاری در سازمان ها، باعث افزایش سرعت تصمیم گیری و قابلیت انعطاف پذیری میگردد. با توجه به رقابتهای شدید سازمانها و افزایش روزمره آن، ضروری است شرکتها، هوش تجاری را در راستای افزایش رقابت پذیری به کار گیرند. این پژوهش به دنبال بهبود بخشیدن عملکرد شرکت های مرتبط با فناوری اطلاعات میباشد و در این راستا تاثیرات هوش تجاری بر آنها مورد بررسی قرار میگیرد. با توجه سلیقههای متفاوت مشتریان و نیازهای گوناگون آنها، در این تحقیق، نقش هوش تجاری در ارائه خدمات مؤثر به مشتریان در شرکتهای فناوری اطلاعات، در قالب یک مدل ارائه میشود. در این تحقیق، از یک مدل مفهومی جهت تأثیر همه متغیرهای مربوطه به طور همزمان استفاده میگردد. مدل مفهومی شامل پنج متغیر ، یک متغیر مستقل بنام "هوش تجاری" و چهار متغیر وابسته بنام "استراتژی های مدیریت دانش"، "مشتری مداری"، "کسب و کار" و "ارائه خدمات مؤثر به مشتریان" میباشد. دادههای آماری از تعداد 337 نفر از کارکنان شرکتهای فناوری اطلاعات جمع آوری شده است. در این تحقیق نه فرضیه مطرح شده که همه مورد تأیید قرار گرفته است. فرضیههای تأیید شده، نشان میدهد متغیرهای "استراتژیهای مدیریت دانش" و "استراتژی کسب و کار" و "استراتژیهای مشتری مداری" نسبت به" هوش تجاری" تأثیر مستقیم و مثبتی بر "ارائه خدمات مؤثر به مشتریان" دارند. با توجه به نتایج بدست آمده، عوامل "هوش تجاری" و "استراتژیهای مدیریت دانش"، "استراتژی کسب و کار" و "استراتژی مشتری مداری" به ترتیب باید در اولویت فناوری اطلاعات قرار گیرند تا ارتباط بهتر با مشتریان تسهیل شود.
The use of business intelligence in organizations increases decision-making speed and flexibility. Considering the fierce competition of organizations and its increasing day by day, it is necessary for companies to use business intelligence in order to increase competitiveness. This research seeks to improve the performance of companies related to information technology, and in this regard, the effects of business intelligence on them are investigated. Considering the different tastes of customers and their various needs, in this research, the role of business intelligence in providing effective services to customers in IT companies is presented in the form of a model. In this research, a conceptual model is used to influence all relevant variables simultaneously. The conceptual model consists of five variables including an independent variable called "business intelligence" and four dependent variables called "knowledge management strategies", "customer orientation", "business" and "providing effective services to customers". The statistical data of this research was collected from 337 employees of information technology companies. In this research, nine hypotheses have been proposed, all of which have been confirmed. The confirmed hypotheses show that the variables "knowledge management strategies" and "business strategy" and "customer-oriented strategies" have a direct and positive effect on "providing effective services to customers" compared to "business intelligence". According to the obtained results, the factors of "business intelligence" and "knowledge management strategies", "business strategy" and "customer-oriented strategy" should be prioritized in information technology in order to facilitate better communication with customers.
[1 ]. Alter, S. (2004). A work system view of DSS in its fourth decade. Decision Support Systems, 38(3), 319-327.
[2 ]. Ramanigopal, C., Palaniappan, G., & Mani, A. BUSINESS INTELLIGENCE FOR COMPETENCE IN CUSTOMER PROFILING.
[3 ]. Laursen, G. H., & Thorlund, J. (2016). Business analytics for managers: Taking business intelligence beyond reporting: John Wiley & Sons
[4 ]. Arnott, D., & Pervan, G. (2016). A critical analysis of decision support systems research revisited: the rise of design science Enacting Research Methods in Information Systems (pp. 43-103): Springer
[5 ]. Combita Niño, H. A., Cómbita Niño, J. P., & Morales Ortega, R. C. (2018). Business intelligence governance framework in a university: universidad de la costa case study.
[6 ]. Haji Pourushotri, A.A., Safari Ashtiani, M. 2013. Investigating the relationship between business intelligence and psychological empowerment. Scientific Research Quarterly of Management Studies (Improvement and Transformation), Vol. 22, Number: 175-199, (in Persian).
[7 ]. Gupta, S. (2003). A strategy for intelligence. Network magazine.
[8 ]. Piller, F. T., & Walcher, D. (2006). Toolkits for idea competitions: a novel method to integrate users in new product development. R & d Management, 36(3), 307-318.
[9 ]. Tarakh, M.J., Mohajeri, H. 2013. Business intelligence: a dynamic attitude in the field of business. Khwaja Nasiruddin Tusi University of Technology. 7-14, In Perian.
[10 ]. Lee, M.-C. (2015). Business Intelligence, Knowledge Management, and Customer Relationship Management Technological Support in Enterprise Competitive Competence Handbook of Research on Organizational Transformations through Big Data Analytics (pp. 243-262): IGI Global.
[11 ]. Yeoh, W., & Koronios, A. (2010). Critical success factors for business intelligence systems. Journal of computer information systems, 50(3), 23-32.
[12 ]. Menon, L., & Rehani, B. (2012). Business Intelligence on the Cloud–Overview and use case. WhitePaper, TATA Consultancy Services.
[13 ]. Azoff, M., & Charlesworth, I. (2004). The new business intelligence. A European Perspective, Butler Group, White Paper.
[14 ]. Lateef, M., & Keikhosrokiani, P. (2022). Predicting Critical Success Factors of Business Intelligence Implementation for Improving SMEs’ Performances: A Case Study of Lagos State, Nigeria. Journal of the Knowledge Economy, 1-26.
[15 ]. Lönnqvist, A., & Pirttimäki, V. (2006). The measurement of business intelligence. Information systems management, 23(1), 32.
[16 ]. Williams, S., & Williams, N. (2010). The profit impact of business intelligence: Elsevier.
[17 ]. Peters, M. D., Wieder, B., Sutton, S. G., & Wakefield, J. (2016). Business intelligence systems use in performance measurement capabilities: Implications for enhanced competitive advantage. International Journal of Accounting Information Systems, 21, 1-17.
[18 ]. Olszak, C. (2013). The Business intelligence-based Organization-new chances and Possibilities. Paper presented at the ICMLG2013-Proceedings of the International Conference on Management, Leadership and Governance: ICMLG 2013.
[19 ]. Fink, L., Yogev, N., & Even, A. (2017). Business intelligence and organizational learning: An empirical investigation of value creation processes. Information & management, 54(1), 38-56.
[20 ]. Choi, B., Poon, S. K., & Davis, J. G. (2008). Effects of knowledge management strategy on organizational performance: A complementarity theory-based approach. Omega, 36(2), 235-251.
[21 ]. Currie, G., & Kerrin, M. (2003). Human resource management and knowledge management: enhancing knowledge sharing in a pharmaceutical company. The International Journal of Human Resource Management, 14(6), 1027-1045.
[22 ]. Petersen, N. J., & Poulfelt, F. (2002). Knowledge management in action. Developing knowledge and value in management consulting, 2(33), 1-23.
[23 ]. Terho, H., Eggert, A., Haas, A., & Ulaga, W. (2015). How sales strategy translates into performance: The role of salesperson customer orientation and value-based selling. Industrial Marketing Management, 45, 12-21.
[24 ]. Payne, A., & Frow, P. (2005). A strategic framework for customer relationship management. Journal of marketing, 69(4), 167-176.
[25 ]. Porter, M. E. (2008). On competition: Harvard Business Press
[26 ]. Olson, E. M., Slater, S. F., & Hult, G. T. M. (2005). The performance implications of fit among business strategy, marketing organization structure, and strategic behavior. Journal of marketing, 69(3), 49-65.
[27 ]. Grönroos, C., & Ravald, A. (2011). Service as business logic: implications for value creation and marketing. Journal of service management.
[28 ]. Parasuraman, A., Zeithaml, V. A., & Berry, L. L. (1985). A conceptual model of service quality and its implications for future research. Journal of marketing, 49(4), 41-50.
[29 ]. Van Thanh, P., TRAN, D. M., & PHAM, D. B. T. (2020). Impact of Service Quality, Customer Satisfaction and Switching Costs on Customer Loyalty. The Journal of Asian Finance, Economics and Business (JAFEB), 7(8), 395-405.
[30 ]. Rouhani, S., Zare Ravasan, A. 2013. Model for assessing the level of commercial intelligence in organizational systems. Information Technology Management Studies Quarterly. First Year, No. 24: 105-121, In Perian.
[31 ]. Handzic, M., Ozlen, K., & Durmic, N. (2014). Improving customer relationship management through business intelligence. Journal of Information & Knowledge Management, 13(02), 1450015.
[32 ]. Wieder, B., & Ossimitz, M.-L. (2015). the impact of Business Intelligence on the quality of decision making–a mediation model. Procedia Computer Science, 64, 1163-1171.
[33 ]. Faiz Abadi, H. (2016), Investigating the effect of customer relationship management and business intelligence on the performance of private bank branches in Sabzevar city. Thesis, In Persian.
[34 ]. Shahraki, A. R., Shahraki, M. R., & Dejkam, R. (2017). Evaluation the Effect of Implementing Business Intelligence on Customer Relationship Management Success. International Journal of Advanced Studies in Humanities and Social Science, 6(2), 147-160.
[35 ]. Mortezaei, A., Sangari, M. S., Nazari-Shirkouhi, S., & Razmi, J. (2018). The Impact of Business Intelligence (BI) Competence on Customer Relationship Management (CRM) Process: An Empirical Investigation of the Banking Industry. Journal of Information Technology Management, 10(1), 209-234.
[36 ]. Hadhoud, R., & Salameh, W. A. (2020). How Business Intelligence Can Help You to Better Understand Your Customers. International Journal of Business Intelligence Research (IJBIR), 11(1), 50-58.
[37 ]. Chen, Y., & Lin, Z. (2021). Business intelligence capabilities and firm performance: A study in China. International Journal of Information Management, Vol. (57) 10, 22-32.
[38 ]. Nazari, F., Taghavi, S. S., Valizadeh, E., Soleymani, M., Farahani, D. S., & Bagheri, R. (2022). An Investigation on the Impact of Business Intelligence over the Performance of Startup Companies according to Innovation and Knowledge Management as Mediators. Mathematical Problems in Engineering, 2022.
[39 ]. Saldanha, T., & Krishnan, M. (2011). BI and CRM for customer involvement in product and service development, Proceedings of the International Conference on Information Systems, ICIS 2011, Shanghai, China, December 4-7, 2011.
[40 ]. Naseri Esfahani, S., Safaipour, H., Tarakh, M.J. (2014), Application of business intelligence and customer relationship management in electronic municipality (case study of Information and Communication Technology Organization of Isfahan municipality, data from tolls and renovation department). Industrial Engineering and Madiyet Sharif. Vol. 1, Number 2. pp. 81-88, In Persian.
[41 ]. Rezaei, S., & Alikhani, A. (2014). An assessment on employees’ business intelligence and CRM on customer satisfaction: A case study of Auto industry. Management Science Letters, 4(2), 273-276.
[42 ]. Kowalczyk, M., & Buxmann, P. (2015). An ambidextrous perspective on business intelligence and analytics support in decision processes: Insights from a multiple case study. Decision Support Systems, 80, 1-13.
[43 ]. Soheilinia, H. (2016), Investigating the applications of business intelligence in the electronic banking industry (case study: Khorramabad city). Qeshm International Branch Free University. 1-219, in Persian.
[44 ]. Aghai, R., Aghai, M. (2017), Investigating the mutual effects between business intelligence, customer satisfaction and loyalty, and brand value in the health and cellulose industry of Iran. Technological Growth Quarterly, 4th year, No. 56, pp. 33-41, In Persian.
[45 ]. Fornell, C., & Larcker, D. F. (1981). Structure equation models: LISREL and PLS applied to customer exist-voice theory. Journal of Marketing Research, 18(2), 39-50.
[46 ]. Chin, W. W. (1998). The partial least squares approach to structural equation modeling. Modern methods for business research, 295(2), 295-336.
[47 ]. Wetzels, M., Odekerken-Schröder, G., & Van Oppen, C. (2009). Using PLS path modeling for assessing hierarchical construct models: Guidelines and empirical illustration. MIS quarterly, 177-195.