ارزیابی روند پیشرفت بیماری سوختگی شمشاد در جنگلهای شمال ایران با استفاده از تكنیكهای پردازش تصاویر ماهوارهای
محورهای موضوعی : مهندسی برق و کامپیوترمرضيه قويدل 1 , پیمان بیات 2 , محمد ابراهيم فراشياني 3
1 - دانشگاه آزاد اسلامی واحد رشت،دانشکده فنی و مهندسی
2 - دانشگاه آزاد اسلامی واحد رشت،دانشکده فنی و مهندسی
3 - دانشگاه آزاد اسلامی واحد رشت،دانشکده فنی و مهندسی
کلید واژه:
چکیده مقاله :
در چند سال اخیر، بیماری سوختگی شمشاد به یکی از مهمترین نگرانیهای مدیران منابع طبیعی کشور و دوستداران محیط زیست تبدیل شده است. به منظور کاهش خطر انقراض این گونه، نیاز به تشخیص زودهنگام و تهیه نقشه پراکنش بیماری است و در این راستا، دادههای سنجش از دور میتوانند نقش مهمی را ایفا کنند. در این پژوهش برای بررسی میزان تخریب از ادغام تصاویر پانکروماتیک با قدرت تفکیک مکانی بالا و چندطیفی با قدرت تفکیک مکانی پایین استفاده گردیده و همچنین به طور همزمان در تصاویر استخراجشده از ماهواره لندست 8، ویژگیهای طیفی و بافتی مورد توجه قرار گرفته و در نهایت با استخراج ویژگیهای مؤثر از فضای توصیف کاندیدا با کمک الگوریتم ژنتیک و به کارگیری طبقهبند مناسب در قالب به کارگیری همزمان خوشهبندی فازی و طبقهبندی بیشینه شباهت، کلاس پوشش منطقه با دقت مطلوبی بین سالهای 2014 تا 2018 استخراج نهایی شده است. نتایج ارزیابی و ضریب تبیین مدلها، اعتبارسنجی روش را در برآوردهای آینده مورد تأیید قرار میدهد.
In recent years, boxwood dieback has become one of the essential concerns of practitioners and managers of the natural resources of the country. To control the expansion of the factors contributing to the dieback of box trees, the early detection and preparation of distribution maps are required. Assessment data can play an important role in this regard. The combination of high-resolution and low-spectrum panchromatic images with low resolution is used for evaluating the extent of destruction. Also, spectral and textural features are considered simultaneously in images extracted from Landsat 8 satellite. Finally, by extracting effective features from the candidate description space with the help of genetic algorithm and using the appropriate classification in the form of simultaneous application of fuzzy clustering and maximum similarity classification of area resulted in good accuracy in 2014-2018. The coefficients obtained from the models confirm their model validation for future estimates and the possibility it usage to assess the extent of the affected areas and the evolution of progress for all regions.
