بهبود ساختار هندسی رتور ماشین سنکرون رلوکتانسی با استفاده ترکیبی از شبکه عصبی، الگوریتم ژنتیک و روش اجزای محدود
محورهای موضوعی : مهندسی برق و کامپیوترمرتضی حقپرست 1 , صمد تقیپور بروجنی 2 , عباس کارگر 3
1 - دانشگاه شهرکرد
2 - دانشگاه شهركرد
3 - دانشگاه شهرکرد
کلید واژه: موتور سنکرون رلوکتانسی بهینهسازی برجستگی مغناطیسی روش اجزای محدود شبکه عصبی الگوریتم ژنتیک,
چکیده مقاله :
یک روش مناسب برای رسیدن به بازده و ضریب توان بالا در ماشینهای سنکرون رلوکتانسی، افزایش برجستگی مغناطیسی (Ld/Lq) در این ماشینها است. این کار معمولاً از طریق تغییر ساختار هندسی ماشین و به ویژه با تغییر تعداد و شکل سدهای شار رتور انجام میشود. در این مقاله از یک روش هوشمند برای بهینهسازی موتور سنکرون رلوکتانسی بر مبنای برجستگی مغناطیسی استفاده شده است. به این منظور مشخصات موتور از جمله هندسه ورقهای استاتور، طول محوری ماشین، نوع سیمبندی و تعداد سدکنندههای شار رتور ثابت فرض شده و شش پارامتر برای تعیین مکان سدهای شار رتور تعريف شده است. سپس به ازاي تغييرات پلهای اين پارامترها، برجستگی مغناطیسی رتور با استفاده از روش اجزای محدود (FEM) محاسبه شده و با به کارگیری این مقادیر برای آموزش يك شبكه عصبي (NN)، تابعی برای مدلکردن برجستگی مغناطیسی در موتور فراهم شده است. با در نظر گرفتن این مدل عصبی به عنوان تابع هدف درون الگوريتم ژنتيك (GA)، پارامترهای ماشین سنکرون رلوکتانسی بهينهسازي شده و بهترين ساختار موتور با بیشترین برجستگی مغناطیسی به دست آمده است. در پایان توانایی تخمین درست شبکه عصبی توسط شبیهسازی FEA، و قابلیت سنکرون ماندن موتور در بار نامی توسط شبیهسازی دینامیکی تأیید شده است.
appropriate approach to reach high efficiency in Synchronous Reluctance (SynRel) machines is to enhance these machines’ magnetic saliency. This is usually done by changing the geometry of machine and especially by changing the number and shape of rotor flux barriers. In this paper an intelligent- method have been used to optimizing the design of SynRel motors based on magnetic saliency ratio. To achieve this aim, all of the motor parameters including stator geometry, axial length of machine, winding type, and number of flux barriers in rotor are assumed constant and just position of the rotor flux barriers are optimized. These positions have been defined by six parameters. Changing these parameters, the magnetic saliency of machine is calculated by finite element analysis (FEA). Using these values to train a neural network (NN), a modeling function is obtained for magnetic saliency of SynRel machine. Considering this NN as the target function in genetic algorithm (GA), the parameters of SynRel machine have been optimized and the best rotor structure with highest magnetic saliency has been obtained. Finally the abilities of NN in correct estimation of magnetic saliency and motor synchronization were approved by FEA and dynamic simulation.
[1] ABB, Synchronous Reluctance Motor-Drive Packages, http://www.abb.com/product/us/9AAC171953.aspx.
[2] J. D. Park, C. Kalev, and H. F. Hofmann, "Control of high-speed solid-rotor synchronous reluctance motor/generator for flywheel-based uninterruptible power supplies," IEEE Trans. on Industrial Electronics, vol. 55, no. 8, pp. 3038-3046, Aug. 2008.
[3] H. Hofmann and S. R. Sanders, "High speed synchronous reluctance machine with minimized rotor losses," IEEE Trans. on Industry Applications, vol. 36, no. 2, pp. 531-539, Mar./Apr. 2000.
[4] A. Vagati, M. Pastorelli, and G. Franceschini, "High-performance control of synchronous reluctance motors," IEEE Trans. Ind. Appl., vol. 33, no. 4, pp. 983-991, Jul./Aug. 1997.
[5] M. J. Kamper, F. S. Van der Merwe, and S. Williamson, "Direct finite element design optimization of the cageless reluctance synchronous machine," IEEE Trans. on Energy Conversion, vol. 11, no. 3, pp. 547-555, Sep. 1996.
[6] D. A. Staton, T. J. E. Miller, and S. E. Wood, "Maximising the saliency ratio of the synchronous reluctance motor," in Electric Power Applications, IEE Proc. B, vol. 140, no. 4, pp. 249-259, Jul. 1993.
[7] V. B. Honsinger, "The inductances Ld and Lq of reluctance machines," IEEE Trans. on Power App. and Sys., vol. 90, no. 1, pp. 298-304, Jan./Feb. 1971.
[8] T. Matsuo and T. A. Lipo, "Rotor design optimization of synchronous reluctance machine," IEEE Trans. on Energy Conversion, vol. 9, no. 2, pp. 359-365, Jun. 1994.
[9] S. J. Mun, Y. H. Cho, and J. H. Lee, "Optimum design of synchronous reluctance motors based on torque/volume using finite-element method and sequential unconstrained minimization technique," IEEE Trans. on Magnetics, vol. 44, no. 11, Part 2, pp. 4143-4146, Nov. 2008.
[10] S. Taghipour Boroujeni, N. Bianchi, and L. Alberti, "Fast estimation of line-start reluctance machine parameters by finite element analysis," IEEE Trans. on Energy Conversion, vol. 26, no. 1, pp. 1-8, Mar. 2011.
[11] J. H. Holland, Adaption in Natural and Artificial Systems, Ann Arbor, Michigan: University of Michigan Press, 1970.